• Title/Summary/Keyword: Nano-scale Process

Search Result 253, Processing Time 0.024 seconds

Quality Characteristics of Spray Drying Microparticulated Calcium after Wet-grinding (습식분쇄하여 분무건조한 초미세 분말 칼슘의 품질특성)

  • Han, Min-Woo;Youn, Kwang-Sup
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.657-661
    • /
    • 2009
  • Liquid microparticulated seaweed calcium was manufactured via a wet grinding process. Thereafter, different forming agents such as cyclodextrin, gum arabic, and Na-caseinate were added to the liquid calcium, which was then spray-dried to investigate the quality of the powdered calcium treatments. The moisture contents of samples were approximately 2%. It was also determined that the different kinds of forming agents did not affect the spray drying efficiency. In addition, calcium solubility was the highest in a solution of pH 2. In buffer solution and vinegar, the powdered calcium made with gum arabic showed the highest solubility among the treatments. The calcium contents of all the powdered microparticulate seaweed calcium samples were about 28%, and calcium content was not affected by the forming agents. The spray-dried calcium powder made by spray drying with gum arabic had the highest water vapor uptake, whereas the seaweed calcium was stable in terms of water adsorption. The results of SEM observations indicated that a portion of the spray-dried calcium powders were in nano-scale after wet-grinding. Among the treatments, the use of saccharides as a forming agent resulted in the most uniform particle distribution after spray-drying.

Optical and Hydrophobic Properties of Ag Deposited ZnO Nanorods on ITO/PET (ITO/PET 기판 위에 성장된 산화아연 나노로드에 형성된 은 입자의 광학적 특성 및 소수성 표면 연구)

  • Ko, Yeong-Hwan;Kim, Myung-Sub;Yu, Jae-Su
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.4
    • /
    • pp.205-211
    • /
    • 2012
  • We investigated the optical and hydrophobic properties of the deposited silver (Ag) zinc oxide (ZnO) nanorods (NRs) on flexible indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates (i.e., ITO/PET). The ZnO NRs were grown by an electrochemical deposition using a sputtered ZnO seed layer and the Ag was deposited by using a thermal evaporator. For comparison, the same fabrication process was carried out on the bare ITO/PET without ZnO NRAs. Due to the discrete surface of ZnO NRs, the deposited Ag was formed as nano-scale particles, while the Ag became film-like for bare ITO/PET. In order to control the size and amount of Ag particles, the Ag deposition time was changed from 100 to 600 s. When the deposition time was increased, the Ag particles became larger and denser, and the absorptance was increased. This enhanced absorptance may be due to the localized surface plasmon resonance of Ag particles. Furthermore, the relatively high hydrophobicity was observed for the deposited Ag on the ZnO NRs/ITO/PET. These improved optical and surface properties are expected to be useful for flexible photovoltaic and optoelectronic devices.

Simulation of Energy Resolution of Time of Flight System for Measuring Positron-annihilation induced Auger Electrons (양전자 소멸 Auger 전자 에너지 측정을 위한 Time of Flight의 분해도 향상에 관한 이론적 연구)

  • Kim, J.H.;Yang, T.K.;Lee, C.Y.;Lee, B.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.311-316
    • /
    • 2008
  • Since the presence of the chemical impurities and defect at surfaces and interfaces greatly influence the properties of various semiconductor devices, an unambiguous chemical characterization of the metal and semiconductor surfaces become more important in the view of the miniaturization of the devices toward nano scale. Among the various conventional surface characterization tools, Electron-induced Auger Electron Spectroscopy (EAES), X-ray Photoelectron Spectroscopy (XPS) and Secondary Electron Ion Mass Spectroscopy (SIMS) are being used for the identification of the surface chemical impurities. Recently, a novel surface characterizaion technique, Positron-annihilation induced Auger Electron Spectroscopy (PAES) is introduced to provide a unique method for the analysis of the elemental composition of the top-most atomic layer. In PAES, monoenergetic positron of a few eV are implanted to the surface under study and these positrons become thermalized near the surface. A fraction of the thermalized positron trapped at the surface state annihilate with the neighboring core-level electrons, creating core-hole excitations, which initiate the Auger process with the emission of Auger electrons almost simultaneously with the emission of annihilating gamma-rays. The energy of electrons is generally determined by employing ExB energy selector, which shows a poor resolution of $6{\sim}10eV$. In this paper, time-of-flight system is employed to measure the electrons energy with an enhanced energy resolution. The experimental result is compared with simulation results in the case of both linear (with retarding tube) and reflected TOF systems.