Browse > Article
http://dx.doi.org/10.5757/JKVS.2012.21.4.205

Optical and Hydrophobic Properties of Ag Deposited ZnO Nanorods on ITO/PET  

Ko, Yeong-Hwan (Department of Electronics and Radio Engineering, Institute for Laser Engineering, Kyung Hee University)
Kim, Myung-Sub (Department of Electronics and Radio Engineering, Institute for Laser Engineering, Kyung Hee University)
Yu, Jae-Su (Department of Electronics and Radio Engineering, Institute for Laser Engineering, Kyung Hee University)
Publication Information
Journal of the Korean Vacuum Society / v.21, no.4, 2012 , pp. 205-211 More about this Journal
Abstract
We investigated the optical and hydrophobic properties of the deposited silver (Ag) zinc oxide (ZnO) nanorods (NRs) on flexible indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates (i.e., ITO/PET). The ZnO NRs were grown by an electrochemical deposition using a sputtered ZnO seed layer and the Ag was deposited by using a thermal evaporator. For comparison, the same fabrication process was carried out on the bare ITO/PET without ZnO NRAs. Due to the discrete surface of ZnO NRs, the deposited Ag was formed as nano-scale particles, while the Ag became film-like for bare ITO/PET. In order to control the size and amount of Ag particles, the Ag deposition time was changed from 100 to 600 s. When the deposition time was increased, the Ag particles became larger and denser, and the absorptance was increased. This enhanced absorptance may be due to the localized surface plasmon resonance of Ag particles. Furthermore, the relatively high hydrophobicity was observed for the deposited Ag on the ZnO NRs/ITO/PET. These improved optical and surface properties are expected to be useful for flexible photovoltaic and optoelectronic devices.
Keywords
Ag particles; ZnO nanorods; Indiun tin oxide/polyethylene terephthalate; Localized surface plasmon resonance; Optical absorptance; Hydrophobicity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, Nano Lett. 10, 1501 (2010).   DOI   ScienceOn
2 J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. V. Duyne, Nanomedicine 1, 219 (2006).
3 V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, Adv. Mater. 20, 3528 (2008).   DOI
4 E. Filippo, A. Serra, and D. Manno, Sens. Actuators B: Chem. 138, 625 (2009).   DOI
5 D. D. Evanoff Jr. and G. Chumanov, Chem. Phys. Chem. 6, 1221 (2005).   DOI
6 J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. V. Duyne, J. Phys. Chem. B 103, 3854 (1999).
7 H. K. Lee, M. S. Kim, and J. S. Yu, Nanotechnology 22, 445602 (2011).   DOI   ScienceOn
8 Y. H. Ko, M. S. Kim, and J. S. Yu, J. Korean Vacuum Soc. 20, 381 (2011).   DOI
9 H. K. Kim, J. A. Jeong, K. H. Choi, S. W. Jeong, and J. W. Kang, Electrochem. Solid-State Lett. 12, H169 (2009).   DOI
10 R. Gupta, M. J. Dyer, and W. A. Weimer, J. Appl. Phys. 92, 5264 (2002).   DOI
11 M. Osawa, Top. Appl. Phys. 81, 163 (2001).   DOI
12 C. Yang, G. Zhang, H. M. Li, and W. J. Yoo, J. Kor. Phys. Soc. 56, 1488 (2010).   DOI
13 M. Guo, P. Diao, and S. Cai, Thin Solid Films 515, 7162 (2007).   DOI
14 D. K. Sarkar and R. W. Paynter, J. Adhes. Sci. Technol. 24, 1181 (2010).   DOI
15 H. M. Bok, S. Kim, S. H. Yoo, S. K. Kim, and S. Park, Langmuir 24, 4168 (2008).   DOI
16 R. Fürstner, W. Barthlott, C. Neinhuis, and P. Walzel, Langmuir 21, 956 (2005).   DOI
17 E. Hutter and J. H. Fendler, Adv. Mater. 16, 1685 (2004).   DOI   ScienceOn
18 T. J. Gim, B. J. Lee, and P. K. Shin, J. Korean Vacuum Soc. 19, 341 (2010).   DOI
19 F. J. Beck, A. Polman, and K. R. Catchpole, J. Appl. Phys. 105, 114310 (2009).   DOI   ScienceOn
20 N. B. Goodman, R. Ignatius, L. Wharton, and R. Winston, Appl. Opt. 15, 2434 (1976).   DOI
21 H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).   DOI