• Title/Summary/Keyword: Nano-pili

Search Result 1, Processing Time 0.019 seconds

Enhanced Current Production by Electroactive Biofilm of Sulfate-Reducing Bacteria in the Microbial Fuel Cell

  • Eaktasang, Numfon;Kang, Christina S.;Ryu, Song Jung;Suma, Yanasinee;Kim, Han S.
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.277-281
    • /
    • 2013
  • A dual-chamber microbial fuel cell (MFC) inoculated with Desulfovibrio desulfuricans and supplemented with lactate as an organic fuel was employed in this study. Biofilm formed on the anodic electrode was examined by scanning electron microscopy, revealing that the amount of biofilm was increased with repeated cycles of MFC operation. The maximum current production was notably increased from the first cycle ($1,310.0{\pm}22.3mA/m^2$) to the final cycle ($1,539.4{\pm}25.8mA/m^2$) of MFC run. Coulombic efficiency was also increased from $89.4%{\pm}0.2%$ to $98.9%{\pm}0.5%$. We suggest that the current production efficiency was related to the biomass of biofilm formed on the electrode, which was also increased as the MFC run was repeated. It was also found that D. desulfuricans, which colonized on the electrode, produced filaments or nano-pili. Nano-pili were effective for the attachment of cells on the electrode. In addition, the nano-pili provided a cell-to-cell link and stimulated the development of thicker electroactive biofilm, and therefore, they facilitated electron transfer to the anode. Conclusively, the biofilm of D. desulfuricans enhanced the current production in the MFC as a result of effective attachment of cells and electron transfer from the cell network to the electrode.