Browse > Article
http://dx.doi.org/10.4491/eer.2013.18.4.277

Enhanced Current Production by Electroactive Biofilm of Sulfate-Reducing Bacteria in the Microbial Fuel Cell  

Eaktasang, Numfon (Department of Advanced Technology Fusion, Konkuk University)
Kang, Christina S. (Department of Environmental Engineering, Konkuk University)
Ryu, Song Jung (Department of Environmental Engineering, Konkuk University)
Suma, Yanasinee (Department of Advanced Technology Fusion, Konkuk University)
Kim, Han S. (Department of Environmental Engineering, Konkuk University)
Publication Information
Environmental Engineering Research / v.18, no.4, 2013 , pp. 277-281 More about this Journal
Abstract
A dual-chamber microbial fuel cell (MFC) inoculated with Desulfovibrio desulfuricans and supplemented with lactate as an organic fuel was employed in this study. Biofilm formed on the anodic electrode was examined by scanning electron microscopy, revealing that the amount of biofilm was increased with repeated cycles of MFC operation. The maximum current production was notably increased from the first cycle ($1,310.0{\pm}22.3mA/m^2$) to the final cycle ($1,539.4{\pm}25.8mA/m^2$) of MFC run. Coulombic efficiency was also increased from $89.4%{\pm}0.2%$ to $98.9%{\pm}0.5%$. We suggest that the current production efficiency was related to the biomass of biofilm formed on the electrode, which was also increased as the MFC run was repeated. It was also found that D. desulfuricans, which colonized on the electrode, produced filaments or nano-pili. Nano-pili were effective for the attachment of cells on the electrode. In addition, the nano-pili provided a cell-to-cell link and stimulated the development of thicker electroactive biofilm, and therefore, they facilitated electron transfer to the anode. Conclusively, the biofilm of D. desulfuricans enhanced the current production in the MFC as a result of effective attachment of cells and electron transfer from the cell network to the electrode.
Keywords
Current production; Desulfovibrio desulfuricans; Electroactive biofilm; Microbial fuel cells; Nano-pili; Sulfate-reducing bacteria;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Allen RM, Bennetto HP. Microbial fuel-cells: electricity production from carbohydrates. Appl. Biochem. Biotechnol. 1993;39-40:27-40.   DOI
2 Kim IS, Chae KJ, Choi MJ, Verstraete W. Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation. Environ. Eng. Res. 2008;13:51-68.   과학기술학회마을   DOI   ScienceOn
3 Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 2006;14:512-518.   DOI   ScienceOn
4 Song YC, Kim MK, Yi JS. Influence of sulfate as an electron acceptor on the anaerobic hydrolysis and acidogenesis of particulate organics. Environ. Eng. Res. 2003;8:116-121.   과학기술학회마을   DOI   ScienceOn
5 Rabaey K, Van de Sompel K, Maignien L, et al. Microbial fuel cells for sulfide removal. Environ. Sci. Technol. 2006;40:5218-5224.   DOI   ScienceOn
6 Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 2003;69:1548-1555.   DOI   ScienceOn
7 Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJ, Woodward JC. Humic substances as electron acceptors for microbial respiration. Nature 1996;382:445-448.   DOI   ScienceOn
8 Newman DK, Kolter R. A role for excreted quinones in extracellular electron transfer. Nature 2000;405:94-97.   DOI   ScienceOn
9 Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. Extracellular electron transfer via microbial nanowires. Nature 2005;435:1098-1101.   DOI   ScienceOn
10 Gorby YA, Yanina S, McLean JS, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. U. S. A. 2006;103:11358-11363.   DOI   ScienceOn
11 El-Naggar MY, Gorby YA, Xia W, Nealson KH. The molecular density of states in bacterial nanowires. Biophys. J. 2008;95:L10-L12.   DOI   ScienceOn
12 Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 2003;21:1229-1232.   DOI   ScienceOn
13 Gregory KB, Bond DR, Lovley DR. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 2004;6:596-604.   DOI   ScienceOn
14 Zhao F, Rahunen N, Varcoe JR, et al. Factors affecting the performance of microbial fuel cells for sulfur pollutants removal. Biosens. Bioelectron. 2009;24:1931-1936.   DOI   ScienceOn
15 Tang X, Guo K, Li H, Du Z, Tian J. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresour. Technol. 2011;102:3558-3560.   DOI   ScienceOn
16 Chae KJ, Choi M, Ajayi F, Park W, Chang IS, Kim IS. Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuels 2008;22:169-176.   DOI   ScienceOn
17 Zhang T, Fang HH. Phylogenetic diversity of a SRB-rich marine biofilm. Appl. Microbiol. Biotechnol. 2001;57:437-440.   DOI
18 Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem. Commun. 2005;7:1405-1410.   DOI   ScienceOn
19 Eaton AD, Clesceri LS, Rice EW, Greenberg AE. Standard methods for examination of water and wastewater. 21st ed. Washington: American Public Health Association; 2005.
20 Zhang B, Zhao H, Shi C, Zhou S, Ni J. Simultaneous removal of sulfide and organics with vanadium(V) reduction in microbial fuel cells. J. Chem. Technol. Biotechnol. 2009;84:1780-1786.   DOI   ScienceOn
21 Richter H, McCarthy K, Nevin KP, Johnson JP, Rotello VM, Lovley DR. Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir 2008;24:4376-4379.   DOI   ScienceOn
22 Liu Y, Harnisch F, Fricke K, Sietmann R, Schroder U. Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure. Biosens. Bioelectron. 2008;24:1006-1011.   DOI   ScienceOn
23 Jadhav GS, Ghangrekar MM. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour. Technol. 2009;100:717-723.   DOI   ScienceOn
24 Nam JY, Kim HW, Lim KH, Shin HS. Electricity generation from MFCs using differently grown anode-attached bacteria. Environ. Eng. Res. 2010;15:71-78.   과학기술학회마을   DOI   ScienceOn