• Title/Summary/Keyword: Nano-micro porous

Search Result 54, Processing Time 0.022 seconds

Pore Gradient Nickel-Copper Nanostructured Foam Electrode (기공 경사화된 나노 구조의 니켈-구리 거품 전극)

  • Choi, Woo-Sung;Shin, Heon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.270-276
    • /
    • 2010
  • Nickel-copper foam electrodes with pore gradient micro framework and nano-ramified wall have been prepared by using an electrochemical deposition process. Growth habit of nickel-copper co-deposits was quite different from that of pure nickel deposit. In particular, the ramified structure of the individual particles was getting clear with chloride ion content in the electrolyte. The ratio of nickel to copper in the deposits decreased with the distance away from the substrate and the more chloride ions in the electrolyte led to the more nickel content throughout the deposits. Compositional analysis for the cross section of a ramified branch, together with tactical selective copper etching, proved that the copper content increased with approaching central region of the cross section. Such a composition gradient actually disappeared after heat treatment. It is anticipated that the pore gradient nickel-copper nanostructured foams presented in this work might be a promising option for the high-performance electrode in functional electrochemical devices.

Ordered Macropores Prepared in p-Type Silicon (P-형 실리콘에 형성된 정렬된 매크로 공극)

  • Kim, Jae-Hyun;Kim, Gang-Phil;Ryu, Hong-Keun;Suh, Hong-Suk;Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.241-241
    • /
    • 2008
  • Macrofore formation in silicon and other semiconductors using electrochemical etching processes has been, in the last years, a subject of great attention of both theory and practice. Its first reason of concern is new areas of macropore silicone applications arising from microelectromechanical systems processing (MEMS), membrane techniques, solar cells, sensors, photonic crystals, and new technologies like a silicon-on-nothing (SON) technology. Its formation mechanism with a rich variety of controllable microstructures and their many potential applications have been studied extensively recently. Porous silicon is formed by anodic etching of crystalline silicon in hydrofluoric acid. During the etching process holes are required to enable the dissolution of the silicon anode. For p-type silicon, holes are the majority charge carriers, therefore porous silicon can be formed under the action of a positive bias on the silicon anode. For n-type silicon, holes to dissolve silicon is supplied by illuminating n-type silicon with above-band-gap light which allows sufficient generation of holes. To make a desired three-dimensional nano- or micro-structures, pre-structuring the masked surface in KOH solution to form a periodic array of etch pits before electrochemical etching. Due to enhanced electric field, the holes are efficiently collected at the pore tips for etching. The depletion of holes in the space charge region prevents silicon dissolution at the sidewalls, enabling anisotropic etching for the trenches. This is correct theoretical explanation for n-type Si etching. However, there are a few experimental repors in p-type silicon, while a number of theoretical models have been worked out to explain experimental dependence observed. To perform ordered macrofore formaion for p-type silicon, various kinds of mask patterns to make initial KOH etch pits were used. In order to understand the roles played by the kinds of etching solution in the formation of pillar arrays, we have undertaken a systematic study of the solvent effects in mixtures of HF, N-dimethylformamide (DMF), iso-propanol, and mixtures of HF with water on the macrofore structure formation on monocrystalline p-type silicon with a resistivity varying between 10 ~ 0.01 $\Omega$ cm. The etching solution including the iso-propanol produced a best three dimensional pillar structures. The experimental results are discussed on the base of Lehmann's comprehensive model based on SCR width.

  • PDF

Characterization of Ceramic Composite-Membranes Prepared by TEOS-PEG Coating Sol (TEOS-PEG계 Sol-Gel코팅에 의한 세라믹 분리 막의 제조 및 특성)

  • Kim, Tae-Bong;Choi, Se-Young;Kim, Goo-Dae
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.165-170
    • /
    • 2005
  • Sol-gel methods offer many advantages over conventional slip-casting, including the ability to produce ceramic membranes. They are purer, more homogeneous, more reactive and contain a wider variety of compositions. We produced ormosil sol using sol-gel process under various molecular weight of polymer species[polyethylene glycol(PEG)] in total system [Tetraethyl ortho silicate(TEOS)-polyethylene glycol(PEG)]. The properties of as-prepared ormosil sol such as viscosity and gelation time are characterized. Also, the ceramic membrane was prepared by dip-coating with synthetic sol and its microstructure was observed by scanning electron microscopy. The permeability and rejection efficiency of membrane for oil/water emulsion were evaluated as cross­flow apparatus. The ormosil sol coated membrane was easily formed by steric effect of polymer and it improved flux efficiency because infiltration into porous support decreased. Its flux efficiency was elevated about $200\;l/m^2h$ compared with colloidal sol coated membrane at point of five minutes from starting test.

Synthesis of ceria by combination of spray pyrolysis, postheat, and ball-milling and its characterization (분무열분해, 후소성 및 볼밀링을 조합한 방법을 이용한 세리아의 합성 및 특성연구)

  • Kim, Hyun-Ik;Kim, Sang Pil;Song, Jae-Kyung;Kim, Sang Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1057-1072
    • /
    • 2018
  • In this study, micro-sized $CeO_2$ particles were synthesized by spray pyrolysis, and EG(ethylene glycol) and CA(citric acid) as organic additives were added to obtain hollow and porous particle during spray pyrolysis, and characteristics of obtained ceria were investigated according to the amount of added organic additives. Spray pyrolysis, postheat and ball-milling were combined to give 6 paths. $CeO_2$ nano-sized particle was obtained by the path which has sequence of Spray Pyrolysis with 0.5 M of EG and CA${\rightarrow}$Post-heat${\rightarrow}$Ball-milling${\rightarrow}$Post-heat among 6 paths. The average particle size(24 nm with standard deviation of 3.8 nm) of $CeO_2$ nano-sized particle by TEM analysis is close to the primary particle size(20 nm) which was calculated by Debye-Scherrer equation. To investigate the morphological characteristics and structure of the synthesized nanoparticle powders, SEM(Scanning Electron Microscopy), XRD(X-Ray Diffractometer) and TEM(Transmission Electron Microscopy) were used.