• 제목/요약/키워드: Nano-lithography

검색결과 336건 처리시간 0.033초

SPL에 의한 나노구조 제조 공정 연구 (Fabrication of nanometer scale patterning by a scanning probe lithography)

  • 류진화;김창석;정명영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.330-333
    • /
    • 2005
  • The fabrication of mold fur nano imprint lithography (NIL) is experimentally reported using the scanning probe lithography (SPL) technique, instead of the conventional I-beam lithography technique. The nanometer scale patterning structure is fabricated by the localized generation of oxide patterning on the silicon (100) wafer surface with a thin oxide layer, The fabrication method is based on the contact mode of scanning probe microscope (SPM) in air, The precision cleaning process is also performed to reach the low roughness value of $R_{rms}=0.084 nm$, which is important to increase the reproducibility of patterning. The height and width of the oxide dot are generated to be 15.667 nm and 209.5 nm, respectively, by applying 17 V during 350 ms.

  • PDF

UV 임프린트 공정을 이용한 평판형 광도파로 기반의 집적형 분광 모듈 제작 (Fabrication of Monolithic Spectrometer Module Based on Planar Optical Waveguide Platform using UV Imprint Lithography)

  • 오승훈;정명영;김환기;최현용
    • 마이크로전자및패키징학회지
    • /
    • 제22권3호
    • /
    • pp.73-77
    • /
    • 2015
  • 본 논문에서는 저가로 쉽게 제작할 수 있는 구조를 지닌 단일칩 형태의 고분자 기반 평판형 분광모듈을 제안하였다. 제안된 분광모듈은 UV 임프린트 기법에 의해 제작되어진 비등간격 나노회절격자와 오목거울이 포함된 평판형 광도파로로 구성되어진다. 회절효율을 향상시키기 위해 나노회절격자의 구조는 $25^{\circ}$의 블레이징 각도와 100nm의 선폭을 가지도록 설계, 제작되었다. 평판형 분광모듈은 700 nm 대역폭과 10 nm 분해능을 가짐을 확인하였다. 이러한 집적형 고분자 분광모듈은 다양한 센서 시스템에 적용될 수 있을 것으로 기대된다.

Detecting Digital Micromirror Device Malfunctions in High-throughput Maskless Lithography

  • Kang, Minwook;Kang, Dong Won;Hahn, Jae W.
    • Journal of the Optical Society of Korea
    • /
    • 제17권6호
    • /
    • pp.513-517
    • /
    • 2013
  • Recently, maskless lithography (ML) systems have become popular in digital manufacturing technologies. To achieve high-throughput manufacturing processes, digital micromirror devices (DMD) in ML systems must be driven to their operational limits, often in harsh conditions. We propose an instrument and algorithm to detect DMD malfunctions to ensure perfect mask image transfer to the photoresist in ML systems. DMD malfunctions are caused by either bad DMD pixels or data transfer errors. We detect bad DMD pixels with $20{\times}20$ pixel by white and black image tests. To analyze data transfer errors at high frame rates, we monitor changes in the frame rate of a target DMD pixel driven by the input data with a set frame rate of up to 28000 frames per second (fps). For our data transfer error detection method, we verified that there are no data transfer errors in the test by confirming the agreement between the input frame rate and the output frame rate within the measurement accuracy of 1 fps.

초발수 표면을 만들기 위한 마이크로-나노 몰드 제작 공정 (Manufacturing process of micro-nano structure for super hydrophobic surface)

  • 임동욱;박규백;박정래;고강호;이정우;김지훈
    • Design & Manufacturing
    • /
    • 제15권4호
    • /
    • pp.57-64
    • /
    • 2021
  • In recent materials industry, researches on the technology to manufacture super hydrophobic surface by effectively controlling the wettability of solid surface are expanding. Research on the fabrication of super hydrophobic surface has been studied not only for basic research but also for self-cleaning, anti-icing, anti-friction, flow resistance reduction in construction, textile, communication, military and aviation fields. A super hydrophobic surface is defined as a surface having a water droplet contact angle of 150 ° or more. The contact angle is determined by the surface energy and is influenced not only by the chemical properties of the surface but also by the rough structure. In this paper, maskless lithography using DMD, electro etching, anodizing and hot embossing are used to make the polymer resin PMMA surface super hydrophobic. In the fabrication of microstructure, DMDs are limited by the spacing of microstructure due to the structural limitations of the mirrors. In order to overcome this, maskless lithography using a transfer mechanism was used in this paper. In this paper, a super hydrophobic surface with micro and nano composite structure was fabricated. And the wettability characteristics of the micro pattern surface were analyzed.

UV 임프린팅 공정을 이용한 금속막 필터제작 (Fabrication of Metallic Nano-Filter Using UV-Imprinting Process)

  • 노철용;이남석;임지석;김석민;강신일
    • 소성∙가공
    • /
    • 제14권5호
    • /
    • pp.473-476
    • /
    • 2005
  • The demand of on-chip total analyzing system with MEMS (micro electro mechanical system) bio/chemical sensor is rapidly increasing. In on-chip total analyzing system, to detect the bio/chemical products with submicron feature size, a filtration system with nano-filter is required. One of the conventional methods to fabricate nano-filter is to use direct patterning or RIE (reactive ion etching). However, those procedures are very costly and are not suitable fur mass production. In this study, we suggested new fabrication method for a nano-filter based on replication process, which is simple and low cost process. After the Si master was fabricated by laser interference lithography and reactive ion etching process, the polymeric mold was replicated by UV-imprint process. Metallic nano-filter was fabricated after removing the polymeric part of metal deposited polymeric mold. Finally, our fabrication method was applied to metallic nano-filter with $1{\mu}m$ pitch size and $0.4{\mu}m$ hole size for bacteria sensor application.

High Resolution Patternning for Graphene Nanoribbons (GNRs) Using Electro-hydrodynamic Lithography

  • Lee, Su-Ok;Kim, Ha-Nah;Lee, Jae-Jong;Kang, Dae-Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.198-198
    • /
    • 2012
  • Graphene has been the subject of intense study in recent years owing to its good optoelectronic properties, possibility for stretchable electronics, and so on. Especially, many research groups have studied about graphene nanostructures with various sizes and shapes. Graphene needs to be fabricated into useful devices with controllable electrical properties for its successful device applications. However, this been far from satisfaction owing to a lack of reliable pattern transfer techniques. Photolithography, nanowire etching, and electron beam lithography methods are commonly used for construction of graphene patterns, but those techniques have limitations for getting controllable GNRs. We have developed a novel nanoscale pattern transfer technique based on an electro-hydrodynamic lithography providing highly scalable versatile pattern transfer technique viable for industrial applications. This technique was exploited to fabricate nanoscale patterned graphene structures in a predetermined shape on a substrate. FE-SEM, AFM, and Raman microscopy were used to characterize the patterned graphene structures. This technique may present a very reliable high resolution pattern transfer technique suitable for graphene device applications and can be extended to other inorganic materials.

  • PDF