• Title/Summary/Keyword: Nano-injection Molding

Search Result 84, Processing Time 0.021 seconds

A study on PDMS mold fabrication using thermal embossing method (Thermal embossing 공정을 이용한 PDMS mold 제작에 관한 연구)

  • 김동학;유홍진;김창교;장석원;김태완
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.3
    • /
    • pp.223-226
    • /
    • 2004
  • Injection molding using plastic materials was expected to mass production of structure with nano pattern for low cost phase. The PDMS mold was produced easily and uniformly by using thermal embossing. Quartz master for embossing method was made using electron beam lithography it had 100-500 nm size of line and dot type. The PDMS mold was produced after a brief hardening process and the master removal. The results show that various patterns are successfully fabricated the nano scale.. The replicated mold would be useful a stamper fabrication for injection molding.

  • PDF

Fabrication of Nano-Pattern Mold Using Anodic Aluminum Oxide Template (양극산화 알루미늄을 이용한 나노패턴 성형용 금형제작)

  • Oh, J.G.;Kim, J.S.;Kang, J.J.;Kim, J.D.;Yoon, K.H.;Hwang, C.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.240-243
    • /
    • 2009
  • Recently, many researches on the development of super-hydrophobic and anti-reflective surfaces have been concentrated on the fabrication of nano-patterned products. The nano-patterned mold is a key to replicate nano-patterned products by mass production techniques such as injection molding and UV molding. The present paper proposes fabricating nano-patterned mold with cost-effective method. The nano-pattern molded was fabricated by electroforming the anodic aluminum oxide template without E-beam lithography. The final mold with nano-patterns showed the pores with the diameter of $100{\sim}120$ nm and the height of 150 nm was fabricated.

  • PDF

Surface Heating Method Using Hot Jet Impingement for Improving Transcription of Nano-Pattern (나노 패턴의 전사성 향상을 위한 고온 기체 분사를 이용한 금형 표면의 가열 기법)

  • Kim, K.H.;Yoo, Y.E.;Je, T.J.;Choi, D.S.;Kim, S.K.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.9-14
    • /
    • 2007
  • In this paper, a mold temperature control method for injection molding is proposed. The inner surface of mold is locally heated by jet impingement to improve pattern transcription. Heating by hot jet is completed while the mold is open. An experimental system that realizes the proposed idea has been built, which includes mold, nozzle assembly and heater. Actual injection molding process including the proposed heating procedure has been conducted to verify the validity of the method. The process has been done for several conditions with different jet temperatures and duration of heating. The results from different conditions are compared.

Localized Induction-Heating Method by the Use of Selective Mold Material (재료의 선택적 사용에 의한 금형의 국부적 유도가열기법)

  • Park, Keun;Do, Bum-Suk;Park, Jung-Min;Lee, Sang-Ik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.168-171
    • /
    • 2009
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact procedure. Though the induction heating has an advantage in terms of its rapid-heating capacity on the mold surface, it still has a restriction on mold temperature control due to geometric restriction of an induction coil according to the mold shape. It has been recently applied to the injection molding of thin-walled parts or micro/nano structures. For localized induction heating, an injection mold composed of ferromagnetic material and paramagnetic material is used. The electromagnetic induction concentrates on the ferromagnetic material, from which we can selectively heat for the local mold elements. The present study proposed a localized induction heating method by means of selective use of mold material. The feasibility of the proposed heating method is investigated through the comparison of experimental observations according to the mold material.

  • PDF

A study on light weighted injection molding technology and warpage reduction for lightweight automotive head lamp parts (자동차 헤드램프 부품의 경량화 사출 성형기술 및 변형 저감에 관한 연구)

  • Jeong, Eui-Chul;Son, Jung-Eon;Min, Sung-Ki;Kim, Jong-Heon;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, micro cellular injection molding of automobile head lamp housing with uneven thickness structure was performed to obtain improvement on deformation and light-weight of the part. The thickness of the presented model was uniformly modified to control the deformation of the molded part. In order to maximize the lightweight ratio, the model having an average thickness of 2.0 mm were thinly molded to an average thickness of 1.6 mm. GFM(Gas Free Molding) and CBM(Core Back Molding) technology were applied to improve the problems of the conventional foam molding method. Equal Heat & Cool system was also applied by 3D cooling core and individual flow control system. Warpage of the molded parts with even cooling was minimized. To improve the mechanical properties of foamed products, complex resin containing nano-filler was used and variation of mechanical properties was evaluated. It was shown that the weight reduction ratio of products with light-weighted injection molding was 8.9 % and the deformation of the products was improved from the maximum of 3.6 mm to 2.0 mm by applying Equal Heat & Cool mold cooling system. Also the mechanical strength reduction of foamed product was less than 12% at maximum.

Effect of Molding Conditions on Demolding Force During Injection Molding of Parts with Micro-features (미세 패턴 사출 성형에서의 이형력에 대한 성형 조건의 영향 평가)

  • Park, S.H.;Yoo, Y.E.;Lee, W.I.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.127-132
    • /
    • 2014
  • Micro/nano-injection molding is one of the main processing techniques for polymer micro-fabrication. Most of the difficulties encountered in polymer micro-molding are caused by the demolding, rather than the filling of molds. Therefore, studying the demolding process is vitally important for manufacturing polymer replicas. The most important parameters are the thermal stress, friction and adhesion forces, and mechanical strength of the resist. In this research, we determinedthe effects of the processing conditions on the ejection force for cases involving two common thermoplastic polymers. The results showed that the processing conditions noticeably influenced the ejection force.

Three-Dimensional Finite Element Analysis of the Induction Heating Procedure of an Injection Mold (고주파유도 급속 금형가열 과정의 3차원 유한요소해석)

  • Sohn, Dong-Hwi;Seo, Young-Soo;Park, Keun
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.152-159
    • /
    • 2010
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner, and has been recently applied to the injection molding due to its capability of rapid heating and cooling of mold surface. The present study covers a three-dimensional finite element analysis to investigate heating efficiency and structural safety of the induction heating process of an injection mold. To simulate the induction heating process, an integrated simulation method is proposed by effectively connecting an electromagnetic field analysis, a transient heat transfer analysis and a thermal stress analysis. The estimated temperature changes are compared with experimental measurements for various types of induction coil, from which heating efficiency according to the coil shape is discussed. The resulting thermal stress distributions of the mold plate for various types of induction coils are also evaluated and discussed in terms of the structural safety.

Die Compaction and Sintering Behavior of Fe Micro-nano-powder Feedstock for Micro-PIM (마이크로 PIM용 Fe 마이크로-나노 혼합분말 피드스톡의 다이성형 및 소결거동)

  • You, Woo-Kyung;Choi, Joon-Phil;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.32-39
    • /
    • 2011
  • The present investigation was performed on the die compaction and sintering behavior of Fe micro-nano mixed powder with a mixed binder for powder injection molding. Warm die compaction of the feedstock for simulation of the static injection molding process was conducted using a cylindrical mold of 10 mm diameter at $100^{\circ}C$ under 4MPa. The die compaction of the micro-nanopowder feedstock underwent a uniform molding behavior showing a homogeneous distribution of nanopowders among the micropowders without porosity and distortion. After debinding, the powder compact maintained a uniform structure without crack and distortion, leading to a high green density of 64.2% corresponding to the initial powder loading of 65%. The sintering experiment showed that the micro-nanopowder compact underwent a near full and isotropic densification process during sintering. It was observed that the nanopowders effectively suppressed the growth of micropowder grains during densification process. Conclusively, the use of nanopowder for PIM feedstock might provide a new concept for processing a full density PIM parts with fine microstructure.

A Study on Rapid Mold Heating System using High-Frequency Induction Heating (고주파 유도가열을 사용한 급속 금형가열에 관한 연구)

  • Jeong, Hui-Tack;Yun, Jae-Ho;Park, Keun;Kwon, Oh-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.594-600
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat a conductive workpiece by means of high-frequency electric current caused by electromagnetic induction. Because the induction heating is a convenient and efficient way of indirect heating, it has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation on the rapid heating using the induction heating and rapid cooling using a vortex tube in order to eliminate an excessive cycle time increase. Experiments are performed in the case of a steel cup mold core with various heating and cooling conditions. Temperature is measured during heating and cooling time, from which appropriate mold heating and cooling conditions can be obtained.