• Title/Summary/Keyword: Nano-crystal

Search Result 636, Processing Time 0.02 seconds

Fabrication of Two-dimensional Photonic Crystal by Roll-to-Roll Nanoreplication (롤투롤 나노 복제 공정을 이용한 이차원 광결정 소자의 제작)

  • Kim, Young-Kyu;Byeon, Euihyeon;Jang, Ho-Young;Kim, Seok-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.16-22
    • /
    • 2013
  • A two-dimensional photonic crystal structure was investigated using a roll-to-roll nanoreplication and physical vapor deposition processes for the inexpensive enhanced fluorescence substrate which is not sensitive to the polarization directions of excitation light source. An 8 inch silicon master having nano dot array with a diameter of 200 nm, a height of 100 nm and a pitch of 400 nm was prepared by KrF laser scanning lithography and reactive ion etching processes. A flexible polymer mold was fabricated by flat type UV replication process and a deposition of 10 nm nickel layer as an anti-adhesion layer. A roll mold was prepared by warping the flexible polymer mold on an aluminum roll base and a roll-to-roll UV replication process was carried out using the roll mold. After the deposition of ~ 100 nm $TiO_2$ layer on the replicated nano dot array, a 2 dimensional photonic crystal structure was realized with a resonance wavelength of 635 nm for both p- and s-polarized light sources.

Three Dimensional Molecular Dynamics Simulation of Nano-Lithography Process for Fabrication of Nanocomponents in Micro Electro Mechanical Systems (MEMS) Applications (MEMS 부품 제조를 위한 나노 리소그래피 공정의 3차원 분자동력학 해석)

  • Kim, Young-Suk;Lee, Seung-Sub;Na, Kyoung-Hoan;Son, Hyun-Sung;Kim, Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1754-1761
    • /
    • 2003
  • The atomic force microscopy (AFM) based lithographic technique has been used directly to machine material surface and fabricate nano components in MEMS (micro electro mechanical system). In this paper, three-dimensional molecular dynamics (MD) simulations have been conducted to evaluate the characteristic of deformation process at atomistic scale for nano-lithography process. Effects of specific combinations of crystal orientations and cutting directions on the nature of atomistic deformation were investigated. The interatomic force between diamond tool and workpiece of copper material was assumed to be derived from the Morse potential function. The variation of tool geometry and cutting depth was also evaluated and the effect on machinability was investigated. The result of the simulation shows that crystal plane and cutting direction significantly influenced the variation of the cutting forces and the nature of deformation ahead of the tool as well as the surface deformation of the machined surface.

Comparative study of InGaN/GaN multi-quantum wells in polar (0001) and semipolar (11-22) GaN-based light emitting diodes

  • Song, Ki-Ryong;Oh, Dong-Sub;Shin, Min-Jae;Lee, Sung-Nam
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.295-299
    • /
    • 2012
  • We investigated the crystal and the optical properties of GaN-based blue light emitting diodes (LEDs) which were simultaneously grown on c-plane (0001) and semipolar (11-22) GaN templates by using metal-organic chemical vapor deposition (MOCVD). The X-ray rocking curves (XRCs) full width at half maximums (FWHMs) of c-plane (0001) and semipolar (11-22) GaN templates were 275 and 889 arcsec, respectively. In addition, high-resolution X-ray ω-2θ scan showed that satellite peaks of semipolar (11-22) InGaN quantum-wells (QWs) was weaker and broader than that of c-plane (0001) InGaN QWs, indicating that the interface quality of c-plane (0001) QWs was superior to that of semipolar (11-22) QWs. Photoluminescence (PL) and electroluminescence (EL) results showed that the emission intensity and the FWHMs of polar c-plane (0001) LED were much higher and narrower than those of semipolar (11-22) LED, respectively. From these results, we believed that relative poor crystal quality of semipolar (11-22) GaN template might give rise to the poor interfacial quality of QWs, resulting in lower output power than conventional c-plane (0001) GaN-based LEDs.

Field emission characteristics of carbon nanfiber bundles

  • Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.211-214
    • /
    • 2004
  • Carbon nanofiber bundles were formed on silicon substrate using microwave plasma-enhanced chemical vapor deposition system. These bundles were vertically well-grown under the high negative bias voltage condition. The bundles were composed of the individual carbon nanofiber having less than 100 nm diameters. Turn-on voltage of the field emission was measured around 0.8 V/$\mu\textrm{m}$. Fowler-Nordheim plot of the measured values confirmed the field emission characteristic of the measured current.

Growth of nickel-catalyzed carbon nanofibers using MPCVD method and their electrical properties

  • Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • Carbon nanofilaments were formed on silicon substrate via microwave plasma-enhanced chemical vapor deposition method. The structure of carbon nanofilaments was identified as the carbon nanofibers. The extent of carbon nanofibers growth and the diameters of carbon nanofibers increased with increasing the total pressure. The growth direction of carbon nanofibers was horizontal to the substrate. Laterally grown carbon nanofibers showed the semiconductor electrical characteristics.

Control the growth direction of carbon nanofibers under direct current bias voltage applied microwave plasma enhanced chemical vapor deposition system

  • Kim Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.198-201
    • /
    • 2005
  • Carbon nanofibers were formed on silicon substrate which was applied by negative direct current (DC) bias voltage using microwave plasma-enhanced chemical vapor deposition method. Formation of carbon nanofibers were varied according to the variation of the applied bias voltage. At -250 V, we found that the growth direction of carbon nanofibers followed the applied direction of the bias voltage. Based on these results, we suggest one of the possible techniques to control the growth direction of the carbon nanofibers.

Nano inclusions in sapphire samples from Sri Lanka

  • Jaijong, K.;Wathanakul, P.;Kim, Y.C.;Choi, H.M.;Bang, S.Y.;Choi, B.G.;Shim, K.B.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.2
    • /
    • pp.84-89
    • /
    • 2009
  • The turbid/translucent, near colorless(milky) metamorphic sapphire samples from Sri Lanka have been characterized after the heat treatment in $N_2$ at $1650^{\circ}C$. As-received sapphire specimens became bluish-colored and exhibited more clarity after the heat treatment. It was found that the color change at inclusions zoning region is attributed by the dissolution. As received samples contain the micro/nano inclusions such as rutile($TiO_2$), ilmenite($FeTiO_3$), spinel($MgAl_{2}O_{4}$)/ulvospinel($Fe_{2}TiO_{4}$) and apatite($Ca_5(PO_4)_3$), which were dissolved by the heat treatment and form the blue color through $Fe^{2+}/Ti^{4+}$ charge transferring. The microstructures become different because as the dissolution of apatite($Ca_5(PO_4)_3(OH,F,Cl)$) in alumino silicates($Al_{2}SiO_{5}$) occurred, resulting in morphological change with the appearance of(Ca, Mg, Al) silicate on the surface. Both as-received and heat treated samples showed the rhombohedral crystal structure of $Al_{2}O_{3}$.

Domain formation and expansion during periodic poling of congruent $LiNbO_3$ using external field (조화용융조성 $LiNbO_3$의 주기적 분극 반전 동안 도메인 생성 및 이동에 관한 연구)

  • Kwon, S.W.;Yang, W.S.;Lee, H.M.;Kim, W.K.;Lee, H.Y.;Yoon, D.H.;Song, Y.S.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.2
    • /
    • pp.53-58
    • /
    • 2006
  • When external field was applied to congruent $LiNbO_3$, it was investgated for domain formation and expansion of $LiNbO_3$. The domain wall velocities of 0.5 mm thickness $LiNbO_3$ were 28.70, 16.02 and $5.75{\mu}m/sec$ under poling field of 23.5, 22.0 and 21.0 kV/mm, respectively. As $1 M{\Omega}$ resistor was used in domain inversion system, harmonic domain inversion was not achieved by rapid domain expansion. And 50% duty cycle periodically poled $LiNbO_3$ have been fabricated by charge control using $10 M{\Omega}$ resistor.

Effects of Gelatin Additives on the Microstructures and Corrosion Properties of Electrodeposited Cu Thin Films (젤라틴 첨가에 의한 구리 박막의 미세구조 변화 및 부식 특성)

  • Kim, Minho;Cha, Hee-Ryoung;Choi, Changsoon;Kim, Hae-sung;Lee, Dongyun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.757-764
    • /
    • 2010
  • We report on the effect of additives on the microstructure and corrosion properties of electrodeposited Cu films. Copper films were fabricated by electrodeposition on various concentrations of gelatin in a copper sulfate electrolyte. The surface morphologies of the Cu films were observed using a scanning electron microscope (SEM), and crystal orientation of the Cu films was analyzed by X-ray diffraction measurement. (220) plane was the dominant orientation when the films were fabricated at ambient temperature, decreasing in dominance with addition of gelatin. On the other hand, (111) plane-Cu films were preferentially grown at $40^{\circ}C$, and were also diminished with adding additives. Corrosion rate measurements using the Tafel extrapolation method based on corrosion potential and current reveal the effect of additives on corrosion behavior. Corrosion behavior was found to be strongly related to the orientation of the films. Consequently, additives like gelatin influence crystal orientation of the films, and if a less dense crystal plane, e.g. (220), is preferentially oriented during electrodeposition, a lower corrosion rate could be produced, since the plane shows a lower current density.