• 제목/요약/키워드: Nano-Tube

검색결과 278건 처리시간 0.049초

탄소 나노 튜브의 영 계수 측정에 관한 연구 (A Study on the Measurement of Young's Modulus of Carbon Nano Tube)

  • 이준석;최재성;강경수;곽윤근;김수현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.682-685
    • /
    • 2003
  • In this paper, we propose the method to measure the Young's modulus of carbon nano tube which was manufactured by chemical vapor deposition. We also made the tungsten tip by electrochemical etching process and the carbon nano tube which was detangled through ultra-sonication with isopropyl alcohol was attached to the tungsten tip. This tip which was composed of tungsten tip and carbon nano tube can be used in Young's modulus measurement by applying DC voltage with counter electrode. The attachment process and measurement of the deflection of carbon nano tube was done under optical microscope.

  • PDF

탄소나노튜브 프로브의 길이 제어에 관한 연구 (A Study on the Control of the Length of Carbon-Nano-Tube Probe)

  • 이준석;곽윤근;김수현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1888-1891
    • /
    • 2003
  • In this paper, we proposed a new method to control the length of carbon nano tube in the single CNT probe. A single CNT probe was composed of a tungsten tip made by the electrochemical etching and carbon nano tube which was grown by CVD and prepared through the sonication. The two components were attached with the carbon tape. Since the length of CNT can not be controlled during the manufacturing, the post process is needed to shorten the CNT. In this paper, we proposed the method of electrochemical process. The process was done under the optical microscope and the results were checked by SEM. The diameter of the carbon nano tube used in this paper was about 130nm because the above process had to be done with the optical microscope. Using the method proposed in this paper, we can control the length of the nano tube tip.

  • PDF

방열소자 나노튜브 제조 시스템을 위한 공정 및 장비 개발에 관한 연구 (A Study on The Development of Process and Equipment for Heat Radiating Module Nano-Tube Manufacturing System)

  • 최갑용
    • 한국융합학회논문지
    • /
    • 제2권3호
    • /
    • pp.45-50
    • /
    • 2011
  • 컴퓨터를 비롯한 고집적 회로를 갖는 시스템의 작동 열 배출이나 열전소자를 이용한 냉난방시스템의 열 이동에는 고성능 열전달 통로가 필요하다. 이와 같은 고효율 열전달 시스템에 효과적으로 대처할 수 있도록 개발된 것이 나노튜브이다. 본 연구의 목적은 방열소자(이하 나노튜브라 한다.) 제조를 위한 공정과 제조시스템을 개발하는데 있다. 지금까지 국내에 보급되고 있는 나노튜브는 대부분 수입에 의존하고 있기 때문에 본 연구는 기술적인 측면에서 방열소자 개발에 기여할 뿐만 아니라 경제적으로는 큰 수입대체효과를 가져 올 것으로 기대된다. 본 연구는 나노튜브의 제조공정과 제조시스템 개발에 대한 전 과정을 보인다.

Characterization of Nano-Tube Fibers Formed by Self-propagating High Temperature Synthesis

  • Choi, Y.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2003년도 international symposium on advanced powder metallurgy
    • /
    • pp.95-96
    • /
    • 2003
  • Titanium carbide nano-tube and fibers were synthesized by self-propagating high temperature synthesis (SHS) method. The average diameters of the nano-tubes and nano-fibers are about 100 and 20 nm in diameter, respectively. the non-stoichiometric numbers of the titanium carbide determined by neutron diffractometry were 0.87 and 0.94.

  • PDF

DC 서보모터를 이용한 나노튜브 제조용 압축-절단 장치의 토크 안전성에 관한 연구 (A Study on the Stability of Torque for Compressing-Cutting Device of Nano Tube Manufacturing System Using DC Servo Motor)

  • 최갑용;오태일
    • 한국산학기술학회논문지
    • /
    • 제12권12호
    • /
    • pp.5393-5397
    • /
    • 2011
  • 본 연구는 나노튜브 제조시스템의 주요 구성요소인 압축-절단 장치가 안전한 성능을 발휘할 수 있도록 설계하는데 목적이 있다. 나노튜브의 제조에 있어서 가장 중요한 핵심기술은 튜브에 나노물질을 주입한 후 압력을 가하여 안전하게 봉합하고 전단분리 하는 것이다. 이 때 작용하는 압력과 속도가 나노튜브의 품질을 결정한다. 본 연구에서는 DC서보모터에 의하여 구동되는 압축-절단 장치의 구동력을 설계하고 이를 바탕으로 시스템을 제작한 후 시제품을 생산하는 과정을 보이고자 한다.

Al 3003 컨덴서 튜브의 직접압출 연구 (A Study of Extrusion Process for Al 3003 Condenser Tube)

  • 배재호;이정민;김병민
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1043-1050
    • /
    • 2005
  • Condenser tube is a component of the heat exchanger in automobile and air conditioning apparatus. It is generally made from the 1000 or 3000 series Al alloys that have good heat efficiency. In the case of 3000 series, these have high strength and hardness but have the disadvantage of low extruability. The development of extruding process in condenser tube with 3000 series Al alloys is studied in this paper. A study on extrusion process is performed through the 3D FE simulation in non-steady state and extrusion experimentation. Also, nano-indentation test is employed to estimate the weldability of tubes. Especially, An evaluation of the weldability using the nano-indentation is accomplished as compared with nano-hardness of welded part and the others in cross-section of tube.

탄소나노튜브 내 유체유동의 분자동역학 모사 (Fluid flow simulation in carbon nano tube using molecular dynamics)

  • 우영석;이우일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.347-354
    • /
    • 2003
  • The dynamics of fluid flow through nanomachines is completely different from that of continuum. In this study, molecular dynamics simulations were performed for the flow of helium, neon, argon inside carbon(graphite) nanotubes of several sizes. The fluid was introduced into the nanotube at a given initial velocity according to given temperature. Diffusion coefficients were evaluated by Green-Kubo equation derived from Einstein relationship. The behaviour of the fluid was strongly dependent on the density of fluid and tube diameter, not on the tube length. It was found that the diffusion Coefficients increased With decreasing the density of molecules and increasing the diameter and temperature.

  • PDF

Fast transport with wall slippage

  • Tang, Zhipeng;Zhang, Yongbin
    • Membrane and Water Treatment
    • /
    • 제12권1호
    • /
    • pp.37-41
    • /
    • 2021
  • This paper presents the multiscale calculation results of the very fast volume transport in micro/nano cylindrical tubes with the wall slippage. There simultaneously occurs the adsorbed layer flow and the intermediate continuum fluid flow which are respectively on different scales. The modeled fluid is water and the tube wall is somewhat hydrophobic. The calculation shows that the power loss on the tube no more than 1.0 Watt/m can generate the wall slippage even if the fluid-tube wall interfacial shear strength is 1 MPa; The power loss on the scale 104 Watt/m produces the volume flow rate through the tube more than one hundred times higher than the classical hydrodynamic theory calculation even if the fluid-tube wall interfacial shear strength is 1 MPa. When the wall slippage occurs, the volume flow rate through the tube is in direct proportion to the power loss on the tube but in inverse proportion to the fluid-tube wall interfacial shear strength. For low interfacial shear strengths such as no more than 1 kPa, the transport in the tube appears very fast with the magnitude more than 4 orders higher than the classical calculation if the power loss on the tube is on the scale 104 Watt/m.