• Title/Summary/Keyword: Nano-Scale Patterning

Search Result 43, Processing Time 0.032 seconds

Development of Continuous and Scalable Nanomanufacturing Technologies Inspired by Traditional Machining Protocols Such as Rolling, Pullout, and Forging (롤압연, 압출, 단조 등 전통 기계가공법의 모사 응용을 통한 다양한 나노패턴의 대면적 연속생산 기술 구현)

  • Ok, Jong G.;Kwak, Moon Kyu;Guo, L. Jay
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.198-202
    • /
    • 2015
  • We present a series of simple but novel nanopatterning methodologies inspired by traditional mechanical machining processes involving rolling, pullout, and forging. First, we introduce roll-to-roll nanopatterning, which adapts conventional rolling for continuous nanopatterning. Then, nano-inscribing and nano-channel lithography are demonstrated, whereby seamless nanogratings can be continuously pulled out, as in a pullout process. Finally, we discuss vibrational indentation micro- and nanopatterning. Similarly to the forging/indentation process, this technique employs high-frequency vertical vibration to indent periodic micro/nanogratings onto a horizontally fed substrate. We discuss the basic principles of each process, along with its advantages, disadvantages, and potential applications. Adopting mature and reliable traditional technologies for small-scale machining may allow continuous nanopatterning techniques to cope with scalable and low-cost nanomanufacturing in a more productive and trustworthy way.

Bioinspired superhydrophobic steel surfaces

  • Heo, Eun-Gyu;O, Gyu-Hwan;Lee, Gwang-Ryeol;Mun, Myeong-Un
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.509-509
    • /
    • 2011
  • Superhydrophobic surfaces on alloyed steels were fabricated with a non-conventional method of plasma etching and subsequent water immersion procedure. High aspect ratio nanopatterns of nanoflake or nano-needle were created on the steels with various Cr content in its composition. With CF4 plasma treatment in radio-frequence chemical vapor deposition (r.-f. CVD) method, steel surfaces were etched and fluorinated by CF4 plasma, which induced the nanopattern evolution through the water immersion process. It was found that fluorine ion played a role as a catalyst to form nanopatterns in water elucidated with XPS and TEM analysis. The hierarchical patterns in micro- and nano scale leads to superhydrophobic properties on the surfaces by deposition of a hydrophobic coating with a-C:H:Si:O film deposited with a gas precursor of hexamethlydisiloxane (HMDSO) with its lower surface energy of 24.2 mN/m, similar to that of curticular wax covering lotus surfaces. Since this method is based on plasma dry etching & coating, precise patterning of surface texturing would be potential on steel or metal surfaces. Patterned hydrophobic steel surfaces were demonstrated by mimicking the Robinia pseudoacacia or acacia leaf, on which water was collected from the humid air using a patterned hydrophobicity on the steels. It is expected that this facile, non-toxic and fast technique would accelerate the large-scale production of superhydrophobic engineering materials with industrial applications.

  • PDF

Synthesis and Characterization of DNA-Templated Nanostructures: Toward Molecular Electronics

  • Lee, Jeong-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.92.1-92.1
    • /
    • 2013
  • Molecular electronics has been the subject of intese research for many years because of the fundamental interest in molecular charge transport and potential applications, such as (bio)nanosensors and molecular memory devices. Molecular electronics requires a method for making reliable eletrical contacts to singlemolecules. To date, several approaches have been reported: scanning-probe microscopy, mechanical break junctions, nano patterning, and direct deposition of electrode on a self-assembled monolayers. However, most methods are laborious and difficult for large-scale application and more importantly, cannot control the number of moleucles in the junction. Recently, DNA has been used as a template for metallic nanostructures (e.g., Ag, Pd, and Au nanowires) through DNA metallization process. Furthermore, oligodeoxynucleotides have been tethered to organic molecules by using conventional organic reactions. Collectively, these techniques should provide an efficient route toward reliable and reproducible molecular electronic devices with large-scale fabrication. Therefore, I will present a paradigm for the fabrication of moleuclar electronic devices by using micrometer-sized DNA-singe organic molecule and DNA triblock structures.

  • PDF

Development of the DNA Sequencing Chip with Nano Pillar Array using Injection Molding (Nano Pillar Array 사출성형을 이용한 DNA 분리 칩 개발)

  • Kim S.K.;Choi D.S.;Yoo Y.E.;Je T.J.;Kim T.H.;Whang K.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1206-1209
    • /
    • 2005
  • In recent, injection molding process for features in sub-micron scale is under active development as patterning nano-scale features, which can provide the master or stamp for molding, and becomes available around the world. Injection molding has been one of the most efficient processes for mass production of the plastic product, and this process is already applied to nano-technology products successfully such as optical storage media like DVD or BD which is a large area plastic thin substrate with nano-scale features on its surface. Bio chip for like DNA sequencing may be another application of this plastic substrate. The DNA can be sequenced using order of 100 nm pore structure when making the DNA flow through the pore structure. Agarose gel and silicon based chip have been used to sequence the DNA, but injection molded plastic chip may have benefit in terms of cost. This plastic DNA sequencing chip has plenty of pillars in order of 100 nm in diameter on the substrate. When the usual features in case of DVD or BD have very low aspect ratio, even less than 0.5, but the DNA chip will have relatively high aspect ratio of about 2. It is not easy to injection mold the large area thin substrate with sub-micron features on its surface due to the characteristics of the molding process and it becomes much more difficult when the aspect ratio of the features becomes high. We investigated the effect of the molding parameters for injection molding with high aspect ratio nano-scale features and injection molded some plastic DNA sequencing chips. We also fabricated PR masters and Ni stamps of the DNA chip to be used for molding

  • PDF

Fabrication of UV imprint stamp using diamond-like carbon coating technology (Diamond-like carbon 코팅기술을 사용한 UV-임프린트 스탬프 제작)

  • JEONG JUN-HO;KIM KI-DON;SIM YOUNG-SUK;CHOI DAE-GEUN;CHOI JUNHYUK;LEE EUNG-SUG;LIM TAE-WOO;PARK SANG-HU;YANG DONG-YOL;CHA NAM-GOO;PARK JIN-GOO
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.167-170
    • /
    • 2005
  • The two-dimensional (2D) and three-dimensional (3D) diamond-like carbon (DLC) stamps for ultraviolet nanoimprint lithography (UV-NIL) were fabricated using two kinds of methods, which were a DLC coating process followed by the focused ion beam (FIB) lithography and the two-photon polymerization (TPP) patterning followed by nano-scale thick DLC coating. We fabricated 70 nm deep lines with a width of 100 nm and 70 nm deep lines with a width of 150 nm on 100 nm thick DLC layers coated on quartz substrates using the FIB lithography. 200 nm wide lines, 3D rings with a diameter of $1.35\;{\mu}m$ and a height of $1.97\;{\mu}m$, and a 3D cone with a bottom diameter of $2.88\;{\mu}m$ and a height of $1.97\;{\mu}m$ were successfully fabricated using the TPP patterning and DLC coating process. The wafers were successfully printed on an UV-NIL using the DLC stamp. We could see the excellent correlation between the dimensions of features of stamp and the corresponding imprinted features.

  • PDF

Ion Transmittance of Anodic Alumina for Ion Beam Nano-patterning (이온빔 나노 패터닝을 위한 양극산화 알루미나의 이온빔 투과)

  • Shin S. W.;Lee J-H;Lee S. G.;Lee J.;Whang C. N.;Choi I-H;Lee K. H.;Jeung W. Y.;Moon H.-C.;Kim T. G.;Song J. H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.97-102
    • /
    • 2006
  • Anodic alumina with self-organized and ordered nano hole arrays can be a good candidate of an irradiation mask to modify the properties of nano-scale region. In order to try using porous anodic alumina as a mask for ion-beam patterning, ion beam transmittance of anodic alumina was tested. 4 Um thick self-standing AAO templates anodized from Al bulk foil with two different aspect ratio, 200:1 and 100:1, were aligned about incident ion beam with finely controllable goniometer. At the best alignment, the transmittance of the AAO with aspect ratio of 200:1 and 100:1 were $10^{-8}\;and\;10^{-4}$, respectively. However transmittance of the thin film AAO with low aspect ratio, 5:1, were remarkably improved to 0.67. The ion beam transmittance of self-standing porous alumina with a thickness larger than $4{\mu}m$ is extremely low owing to high aspect ratio of nano hole and charging effect, even at a precise beam alignment to the direction of nano hole. $SiO_2$ nano dot array was formed by ion irradiation into thin film AAO on $SiO_2$ film. This was confirmed by scanning electron microscopy that the $SiO_2$ nano dot array is similar to AAO hole array.

Fabrication of Nanopatterns for Biochip by Nanoimprint Lithography (나노임프린트를 이용한 바이오칩용 나노 패턴 제작)

  • Choi, Ho-Gil;Kim, Soon-Joong;Oh, Byung-Ken;Choi, Jeong-Woo
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.433-437
    • /
    • 2007
  • A constant desire has been to fabricate nanopatterns for biochip and the Ultraviolet-nano imprint lithography (UV-NIL) is promising technology especially compared with thermal type in view of cost effectiveness. By using this method, nano-scale to micro-scale structures also called nanopore structures can be fabricated on large scale gold plate at normal conditions such as room temperature or low pressure which is not possible in thermal type lithography. One of the most important methods in fabricating biochips, immobilizing, was processed successfully by using this technology. That means immobilizing proteins only on the nanopore structures based on gold, not on hardened resin by UV is now possible by utilizing this method. So this selective nano-patterning process of protein can be useful method fabricating nanoscale protein chip.

The Development of Uniform Pressurizing System for Extremely Large Area UV-NIL (극대면적 UV-NIL 공정에서의 균일 가압 시스템 개발)

  • Choi, Won-Ho;Shin, Yoon-Hyuk;Yeo, Min-Ku;Yim, Hong-Jae;Sin, Dong-Hun;Jang, Si-Youl;Jeong, Jay-Il;Lee, Kee-Sung;Lim, Si-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1917-1921
    • /
    • 2008
  • Ultraviolet-nanoimprint lithography (UV-NIL) is promising technology for cost effectively defining micro/nano scale structure at room temperature and low pressure. In addition, this technology is fascinating because of it's possibility for high-throughput patterning without complex processes. However, to acquire good micro/nano patterns using this technology, there are some challenges such as uniformity and fidelity of patterns, etc. In this paper, we have focused on uniform contact mechanism and performed contact mechanics analysis. The dimension of the flexible sheet to get adequate uniform contact area has been obtained from contact mechanics simulation. Based on this analysis, we have made a uniform pressurizing device and confirmed its uniform pressurized zone using a pressure sensing paper.

  • PDF

A Study on Dip-Pen Nanolithography Process to fabricate Two-dimensional Photonic Crystal for Planar-type Optical Biosensor (평판형 광-바이오센서용 2차원 광자결정 제작을 위한 Dip-Pen Nanolithography 공정 연구)

  • Kim Jun-Hyong;Lee Jong-Il;Lee Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.267-272
    • /
    • 2006
  • Optical waveguide based on symmetric and asymmetric Mach-Zehnder interferometer(MZI) type was designed, fabricated and measured the optical characteristics for the application of biosensor. The wavelength of the input optical signal for the device was 1550 nm. And the difference of refractive index was $0.45\;{\Delta}\%$ between core and cladding of the device. The TM(Transverse Magnetic) mode optical properties of the biosensor were analyzed with the refractive index variation of gold thin film deposited for overclad. Nowadays, nano-photonic crystal structures have been paied much attention for its high optical sensitivity. There is a technique to realize the structure, which is called Dip-Pen Nanolithography(DPN) process. The process requires a nano-scale process patterning resolution and high reliability. In this paper, two dimensional nano-photonic crystal array on the surface was proposed for improving the sensitivity of optical biosensor. And the Dip-Pen Nanolithogrphy process was investigated to realize it.

Direct Patterning of Self Assembled Nano-Structures of Block Copolymers via Electron Beam Lithography

  • Yoon Bo Kyung;Hwang Wonseok;Park Youn Jung;Hwang Jiyoung;Park Cheolmin;Chang Joonyeon
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.435-440
    • /
    • 2005
  • This study describes a method where the match of two different length scales, i.e., the patterns from self-assembled block copolymer (<50 nm) and electron beam writing (>50 nm), allow the nanometer scale pattern mask. The method is based on using block copolymers containing a poly(methyl methacrylate) (PMMA) block, which is subject to be decomposed under an electron beam, as a pattern resist for electron beam lithography. Electron beam on self assembled block copolymer thin film selectively etches PMMA microdomains, giving rise to a polymeric nano-pattern mask on which subsequent evaporation of chromium produces the arrays of Cr nanoparticles followed by lifting off the mask. Furthermore, electron beam lithography was performed on the micropatterned block copolymer film fabricated by micro-imprinting, leading to a hierarchical self assembled pattern where a broad range of length scales was effectively assembled, ranging from several tens of nanometers, through submicrons, to a few microns.