• Title/Summary/Keyword: Nano-Particle

Search Result 1,176, Processing Time 0.041 seconds

Type of Oil and Effect of Required HLB on Nanoemulsion Formation (오일의 종류 및 required HLB가 나노에멀젼 형성에 미치는 영향)

  • Da-yeon Lee;Hye-yun Hwang;Su-min Lim;Hy-ein Jang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.1533-1546
    • /
    • 2023
  • Nanoemulsion is an emulsion with a particle size of about 20 ~ 200 nm and has the advantage of having a transparent or translucent appearance and improving the skin permeability of an effective material with a small particle size, so it is applied in various fields. In this study, eight oils with different types of HLB and 16 oils with different types of required HLB were selected to investigate the effect of the required HLB and the type on the formation of nanoemulsion. The surfactants used at this time were Polysorbate 60 (HLB 14.9), Sorbitan state (HLB 4.7), PEG-60 hydrogenated castor oil (HLB 14.0), which were mixed with Polysorbate 60 and Sorbitan state, fixed with HLB 14.0, and Polysorbate 60 and PEG-60 hydrogenated castor oil, respectively. The formation of nanoemulsion was different depending on the type of oil, and oil with an ester structure showed a relatively excellent nanoemulsion formation ability. In particular, it was confirmed that a stable nanoemulsion was formed without a significant change after Cetyl ethylhexanoin was produced in a small size of 40 nm or less on average. In addition, it was found that using a mixture of Polysorbate 60 and Sorbitan stearate has a superior nanoemulsion formation ability than using PEG-60 hydrogenated castor oil or Polysorbate 60 alone.

Intestinal Permeability of Oyster Shell Calcium with Different Particle Sizes (패각 칼슘 입자 크기에 따른 흡수율)

  • Han, JeungHi;Choi, Hyeon-Son;Ra, Kyung Soo;Chung, Seungsik;Suh, Hyung Joo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.454-458
    • /
    • 2014
  • In this study, we examined the ionization rate and permeability of nanocalcium prepared from oyster shells with various particle sizes. Four particle sizes of the calcium samples were prepared by centrifugation according to their density disparity in alcoholic solution: NC (normal calcium), C-1 (supernatant of 1,000 rpm), C-2 (supernatant of 2,000 rpm), and C-3 (supernatant of 3,000 rpm). Particle sizes of NC, C-1, C-2, and C-3 were $2,280.3{\pm}64.3nm$, $521.3{\pm}83.3nm$, $313.9{\pm}29.5nm$, and $280.0{\pm}3.4nm$, respectively. C-3 showed a slight increase in ionization rate compared with the other calcium samples, but their differences were not significant. Dialysis membrane-employed analysis showed that nanocalcium permeability increased as its particle size smaller; 32% of C-3 nanocalcium was transported to the outside of the membrane, whereas C-1 showed a 25% transport rate. We determined the permeability of the nanocalciums by using rat intestinal sacs, in order to provide different intestinal environments depending on pH level. Nanocalcium generally showed a higher permeability at pH 7, which represents an ileum environments compared to the duodenum and jejunum environments at pH 4.2 and pH 6.2, respectively. However, C-3 calcium showed the highest permeability, followed by C-2, C-1 and NS calciums. This result shows that the size of calcium positively affected its permeability in the intestinal sac. Taken together, nano-sized calcium derived from discarded oyster shell shows improved permeability in intestinal environments.

Microstructural property and catalytic activity of nano-sized MnOx-CeO2/TiO2 for NH3-SCR (선택적 촉매 환원법 재료로서 나노 사이즈 MnOx-CeO2/TiO2 촉매에 대한 미세 구조적 특성과 촉매활성 평가)

  • Hwang, Sungchul;Jo, Seung-hyeon;Shin, Min-Chul;Cha, Jinseon;Lee, Inwon;Park, Hyun;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.3
    • /
    • pp.115-120
    • /
    • 2016
  • $CeO_2$ is used as a co-catalyst with $TiO_2$ to improve the catalytic activity of $MnO_x$ and characterization of nano-sized powder is identified with de-NOx efficiency. A comparison between $MnO_x-CeO_2/TiO_2$ and single $CeO_2$ was conducted in terms of microstructural analysis to observe the behavior of $CeO_2$ in the ternary catalyst. The $MnO_x-CeO_2/TiO_2$ catalyst was synthesized by sol-gel method and the average particle size of the single $CeO_2$ is about $285{\mu}m$ due to the low thermal stability, whereas the particle size $MnO_x-CeO_2/TiO_2$ is about 130 nm. The strong interaction between Ce and Ti was identified through the EDS mapping by transmission electron microscopy (TEM). The improvement about 20 % of $de-NO_x$ efficiency is observed in the low-temperature ($150^{\circ}C{\sim}250^{\circ}C$) and vigorous oxygen exchange by well-dispersed $CeO_2$ is the reason of catalytic activity improvement.

Synthesis and Electrochemical Properties of Li1-xFeO2-yFy-LixMnO2 (Mn/(Mn + Fe) = 0.8, 0≤y≤0.15)) Cathode Materials by Anion Substitution (음이온 치환을 이용한 Li1-xFeO2-yFy-LixMnO2 (Mn/(Mn + Fe) = 0.8, 0≤y≤0.15) 양극 활물질의 합성 및 전기화학적 특성)

  • Heo, J.B.;Park, G.J.;Lee, Y.S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.239-244
    • /
    • 2007
  • In order to investigate the effect of fluorine ion in the $Li_{1-x}FeO_2Li_xMnO_2$ (Mn/(Mn + Fe) = 0.8) cathode material, it was synthesized $Li_{1-x}FeO_{2-y}F_y-Li_xMnO_2$ (Mn/(Mn + Fe) = 0.8, $0.05{\le}y{\le}0.15$) cathode materials at $350^{\circ}C$ for 10hrs using solid-state method. $Li_{1-x}FeO_{2-y}F_y-Li_xMnO_2$ (Mn/(Mn + Fe) = 0.8, $0.0{\le}y{\le}0.1$ was composed many large needle-like particles of about $1-1.5\;{\mu}m$ and small particles of about 50-100 nm, which were distributed among the larger particles. However, $Li_{1-x}FeO_{1.85}F_{0.15}-Li_xMnO_2$ material showed slightly different particle morphology. The particles of $Li_{1-x}FeO_{1.85}F_{0.15}-Li_xMnO_2$ were suddenly increased and started to be a spherical type of particle shape. $Li/Li_{1-x}FeO_{1.9}F_{0.1}-Li_xMnO_2$ cell showed a high initial discharge capacity of 163 mAh/g and a high cycle retention rate of 95% after 50 cycles. The initial discharge capacity of $Li/Li_{1-x}FeO_{2-y}F_y-Li_xMnO_2$ ($0.05{\le}y{\le}0.15$) cells increased according to the increase of F content. However, the cycleability of this cell was very rapidly decreased when the substituted fluorine content is over 0.1. We suggested that too large amount of F ion fail to substitute into the $Li_{1-x}FeO_2-Li_xMnO_2$ structure, which resulted in the severe decline of battery performance.

Novel synthesis of nanocrystalline thin films by design and control of deposition energy and plasma

  • Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.77-77
    • /
    • 2016
  • Thin films synthesized by plasma processes have been widely applied in a variety of industrial sectors. The structure control of thin film is one of prime factor in most of these applications. It is well known that the structure of this film is closely associated with plasma parameters and species of plasma which are electrons, ions, radical and neutrals in plasma processes. However the precise control of structure by plasma process is still limited due to inherent complexity, reproducibility and control problems in practical implementation of plasma processing. Therefore the study on the fundamental physical properties that govern the plasmas becomes more crucial for molecular scale control of film structure and corresponding properties for new generation nano scale film materials development and application. The thin films are formed through nucleation and growth stages during thin film depostion. Such stages involve adsorption, surface diffusion, chemical binding and other atomic processes at surfaces. This requires identification, determination and quantification of the surface activity of the species in the plasma. Specifically, the ions and neutrals have kinetic energies ranging from ~ thermal up to tens of eV, which are generated by electron impact of the polyatomic precursor, gas phase reaction, and interactions with the substrate and reactor walls. The present work highlights these aspects for the controlled and low-temperature plasma enhanced chemical vapour disposition (PECVD) of Si-based films like crystalline Si (c-Si), Si-quantum dot, and sputtered crystalline C by the design and control of radicals, plasmas and the deposition energy. Additionally, there is growing demand on the low-temperature deposition process with low hydrogen content by PECVD. The deposition temperature can be reduced significantly by utilizing alternative plasma concepts to lower the reaction activation energy. Evolution in this area continues and has recently produced solutions by increasing the plasma excitation frequency from radio frequency to ultra high frequency (UHF) and in the range of microwave. In this sense, the necessity of dedicated experimental studies, diagnostics and computer modelling of process plasmas to quantify the effect of the unique chemistry and structure of the growing film by radical and plasma control is realized. Different low-temperature PECVD processes using RF, UHF, and RF/UHF hybrid plasmas along with magnetron sputtering plasmas are investigated using numerous diagnostics and film analysis tools. The broad outlook of this work also outlines some of the 'Grand Scientific Challenges' to which significant contributions from plasma nanoscience-related research can be foreseen.

  • PDF

Synthesis of Ultrafine LaAlO$_3$ Powders with Good Sinterability by Self-Sustaining Combustion Method Using (Glycine+Urea) Fuel ((Glycine+Urea) 혼합연료를 이요한 자발착화 연소반응법에 의한 우수한 소결성의 초미분체 LaAlO$_3$ 분말 합성)

  • Nam, H.D.;Choi, W.S.;Lee, B.H.;Park, S.
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.203-209
    • /
    • 1999
  • LaAlO3d single phase used as the butter layer on Si wafer for YBa2Cu3O7-$\delta$ superconductor application were prepared by solid state reaction method and by self-sustaining combustion process. The microstructure and crystallity of synthesiszed LaAlO3 powder studied using scanning electron microscope (SEM) and X-ray diffractometer(XRD), specific surface area and sintering characteristics fo powder were investigated by Brunauer-Emmett-Teller (BET) method and dilatometer respectively. In solid state reaction method, it is difficult to obtain LaAlO3 single phase up to 150$0^{\circ}C$ period. However, in self-sustaining combustion process, it is to easy to do it only $650^{\circ}C$. Based on the results of analysis of dilatometer it is easier to obtain high sintering density (98.87%) in self-sustaining combustion process than in the solid state reaction method. This reason is that the average particle size prepared by self-sustaining combustion process is nano crystal size and has high specific surface are value(56.54 $m^2$/g) compared with that by solid state reaction method. Also, LaAlO3 layer on the Si wafer has been achieved by screen printing and sintering method. Even though the sintering temperature is 130$0^{\circ}C$, the phenomena of silicon out diffusion in LaAlO3/Si interphase are not observed.

  • PDF

Superhydrophilicity of Titania Hybrid Coating Film Imposed by UV Irradiation without Heat-treatment (저온 경화형 초친수성 티타니아 하이브리드 졸의 제조와 친수성 특성 평가에 관한 연구)

  • Kim, Won-Soo;Park, Won-Kyu
    • Journal of Technologic Dentistry
    • /
    • v.29 no.1
    • /
    • pp.121-131
    • /
    • 2007
  • A preparation process's conditions of aqueous sol which contains anatase-type nano titania particles with photocatalyic properties was established by using Yoldas process, so called, DCS(Destabilization of Colloidal Solution) process in this study. And crystal size change and phase transformation of titania particles in aqueous titania sol depending on reaction conditions was investigated by a light scattering method and XRD analysis of frozen dried powders, respectively. This sol with photo catalytic nano titania particles was used to the following hydrophilic hybrid coating film's fabrication and its properties was evaluated. Subsequently, for coating film using the above mentioned aqueous titania sol, non-aqueous titania sol was prepared without any chemical additives and its time stability according to aging time was investigate. By using the above mentioned aqueous titania sol and non-aqueous sol, a complex oxide coating sol for metal and ceramic substrate and a organic-inorganic hybrid coating sol for polymer substrate was prepared and it's hydrophilicity depending on UV irradiation conditions was evaluated. As a conclusions, the following results were obtained. (1)Aqueous titania sol The average particle size of titania in formed aqueous titania sol was distributed between 20$\sim$90nm range depending on reaction conditions. And the crystal phase of titania powders obtained by frozen drying method was changed from amorphous state to anatase and subsequently transformed to rutile crystal phase and it is attributed to concentration gradient in aqueous sol. (2)Non-aqueous titania sol Non-aqueous titania sol was prepared using methanol as a solvent and a little distilled water for hydrolysis and nitric acid as a catalyst were used. The obtained non-aqueous titania sol was stable at room temperature for 20 days. Additionally, non-aqueous titania sol with addition of chealating reagent such as acethylaceton and ethylene glycol prolonged the stability of sol by six months. (3)Complex sol and hybrid sol with super hydrophilicity The above mentioned aqueous titania sol as a main photocataylic component and non-aqueous titania sol as a binder for coating process was used to prepare a complex sol used for metal, ceramic and wood material substrate and also to prepare the organic-inorganic hybrid sol for polymer substrate such as polycarbonate and polyethylene, in which process APMS(3-Aminopropyltrimethoxysilane), GPTS(3-Glycidoxypropyl-trimethoxysilane) as a hydrophilic silane compound and HEMA(2-Hydroxyethyl methacrylate) as a forming network in hybrid coating film were used. The hybrid coating film such as prepared through this process showed a superhydrophilicity below 1$10^{\circ}$ depending on processing conditions and a pencil's hardness over 6 H.

  • PDF

Nanoemulsions: a Novel Vehicle for Cosmetics (나노에멀젼: 화장품을 위한 새로운 제형)

  • Cho, Wan-Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-21
    • /
    • 2011
  • This review describes several kinds of emulsification methods for nanoemulsions and the application of nanoemulsions. Nanoemulsion droplet sizes fall typically in the range of 20 ~200 nm and show narrow size distributions. Although most of the publications on either oil-in-water (O/W) or water-in-oil (W/O) nanoemulsions have reported their formation by dispersion or high-energy emulsification methods, an increased interest is observed in the study of nano-emulsion formation by condensation or low-energy emulsification methods based on the phase transitions that take place during the emulsification process. Phase behaviour studies have shown that the size of the droplets is governed by the surfactant phase structure (bicontinuous microemulsion or lamellar) at the inversion point induced by either temperature or composition. Studies on nanoemulsion formation by the phase inversion temperature (PIT) method have shown a relation between minimum droplet size and complete solubilization of the oil in a microemulsion bicontinuous phase independently of whether the initial phase equilibrium is single or multiphase. Due to their small droplet size nanoemulsions possess stability against sedimentation or creaming with Ostwald ripening forming the main mechanism of nanoemulsion breakdown. An application of nanoemulsions is the preparation of nanoparticles using a polymerizable monomer as the disperse phase where nanoemulsion droplets act as nanoreactors, cosmetics and controlled drug delivery. In this review, we mainly focus on the cosmetics.

Effect of Podophyllotoxin Conjugated Stearic Acid Grafted Chitosan Oligosaccharide Micelle on Human Glioma Cells

  • Wang, Geng Huan;Shen, He Ping;Huang, Xuan;Jiang, Xiao Hong;Jin, Cheng Sheng;Chu, Zheng Min
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.6
    • /
    • pp.698-706
    • /
    • 2020
  • Objective : To study the physiochemical characteristics of podophyllotoxin (PPT) conjugated stearic acid grafted chitosan oligosaccharide micelle (PPT-CSO-SA), and evaluate the ability of the potential antineoplastic effects against glioma cells. Methods : PPT-CSO-SA was prepared by a dialysis method. The quality of PPT-CSO-SA including micellar size, zeta potential, drug encapsulation efficiency and drug release profiles was evaluated. Glioma cells were cultured and treated with PPT and PPT-CSO-SA. The ability of glioma cells to uptake PPT-CSO-SA was observed. The proliferation of glioma cells was determined by 3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. The apoptosis and morphology of U251 cells were observed by 4',6-Diamidino-2-phenylindole dihydrochloride (DAPI) dye staining. Cell cycle analysis was performed by flow cytometry. The migration ability of U251 cells was determined by wound healing test. Results : PPT-CSO-SA had nano-level particle size and sustained release property. The encapsulation efficiency of drug reached a high level. The cellular uptake percentage of PPT in glioma cells was lower than that of PPT-CSO-SA (p<0.05). The inhibitory effect of PPT-CSO-SA on glioma cells proliferation was significantly stronger than that of PPT (p<0.05). The morphologic change of apoptosis cell such as shrinkage, karyorrhexis and karyopyknosis were observed. The percentage of U251 cells in G2/M phase increased significantly in the PPT-CSO-SA group compared with PPT group (p<0.05). Compared with the PPT group, the cell migration ability of the PPT-CSO-SA group was significantly inhibited after 12 and 24 hours (p<0.05). Conclusion : PPT-CSO-SA can effectively enhance the glioma cellular uptake of drugs, inhibit glioma cells proliferation and migration, induce G2/M phase arrest of them, and promote their apoptosis. It may be a promising anti-glioma nano-drug.

Harmfulness of Particulate Matter in Disease Progression (미세먼지의 질병에 미치는 유해성)

  • Choi, Jong Kyu;Choi, In Soon;Cho, Kwang Keun;Lee, Seung Ho
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.191-201
    • /
    • 2020
  • As society develops rapidly, environmental pollution is becoming a greater risk factor threatening human health. One of the major causes of air pollution that affects human health is particulate matter (PM), which contains a heterogeneous mixture of different particle sizes and chemical compositions. PM is classified by size into general PM (PM10; diameter below 10 ㎛) and fine PM (PM2.5; diameter below 2.5 ㎛). PM2.5 can pass through the respiratory tract into the circulatory system and thence throughout the body. PM2.5 is known to stimulate oxidative stress and inflammatory responses to cells, promoting diseases such as asthma, chronic respiratory disease, cardiovascular disease, diabetes mellitus, and immunological disorders. Although detailed molecular mechanisms for how PM stimulates disease progression still need to be elucidated, together with national efforts to reduce PM production, significant research has been conducted that demonstrates the harmfulness of PM in disease progression through in vitro and in vivo experiments. This review focuses on the harmfulness of PM in disease progression; we also introduce a biological verification method for determining the hazards of PM.