• 제목/요약/키워드: Nano-Coating

검색결과 774건 처리시간 0.027초

Synthesis of Nano-Colloidal Silica Coated with Silver (은을 코팅한 Nano-Colloidal Silica의 합성)

  • Lee, Joo-Heon;Lim, Yoon-Hee;Ham, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • 제19권1호
    • /
    • pp.45-50
    • /
    • 2008
  • The self assembled silver process and silver coating process after surface reforming for silica particle, were investigated to coat the silver to colloidal silica. The effects of silver amounts and reductant amounts on silver coating efficiencies were investigated. The silver coating process after surface reforming for silica particle using MPTS (3-Mercaptopropyl trimethoxysilane) and APTS (3-Aminopropyl trimethoxysilane), showed the higher coating efficiency and better antibacterial effect than the self assembled silver process.

Insulated, Passivated and Adhesively-Promoted Bonding Wire using Al2O3 Nano Coating

  • Soojae Park;Eunmin Cho;Myoungsik Baek;Eulgi Min;Kyujung Choi
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제31권2호
    • /
    • pp.1-8
    • /
    • 2024
  • Bonding wires are composed of conductive metals of Au, Ag & Cu with excellent electrical conductivities for transmitting power and signals to wafer chips. Wire metals do not provide electrical insulation, adhesion promoter and corrosion passivation. Adhesion between metal wires is extremely weak, which is responsible for wire cut failures during thermal cycling. Organic coating for electrical insulation does not satisfy bondability and manufacturability, and it is complex to apply very thin organic coating on metal wires. Automotive packages require enhanced reliability of packages under harsh conditions. LED and power packages are susceptible to wire cut failures. Contrary to conventional OCB behaviors, forming gas was not required for free air ball formation for both Ag and Pd-coated Cu wires with Al2O3 passivation.

Effect of Nano Silver Coating on the Mechanical Properties and Hand of Cotton Fabrics (은나노 코팅이 면직물의 역학적 특성과 태에 미치는 영향)

  • Kang, Mi-Jung;Kwon, Young-Ah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • 제33권8호
    • /
    • pp.1273-1279
    • /
    • 2009
  • This study examined the difference in the mechanical properties of cotton fabrics treated with nano silver. Nano silver powder, UV-absorber, and DMDHEU are applied to cotton fabrics. The reagents added in a finishing solution were Triton X-100 and $MgCl_2$ $6H_2O$. The mechanical properties of the fabrics were measured by KES-FB system. From these, the primary hand values were evaluated by the conversion equation (KN-202-DS). The results of this study are summarized as follows. The fabric tensile properties and bending properties are increased by the application of nano silver, DMDHEU, and UV-absorber mixed. The values of tensile properties in the warp direction were significantly lower than those in the weft direction. However, the values of bending properties in the warp direction were higher than those in the weft direction. The differences in the values of compression parameters by nano silver coating were unnoticeable. However, the compression energy and resilience of compression in each fabric was increased by DMDHEU treatment. The SMD values of cotton fabrics are decreased by nano silver, DMDHEU, and UV-absorber mixed treatment.

Effect of tribochemical silica coating on the shear bond strength of rebonded monocrystalline ceramic brackets (단결정형 세라믹 브라켓의 재접착 시 tribochemical silica coating이 전단접착강도에 미치는 영향)

  • Jeon, Young-Mi;Son, Woo-Sung;Kang, Sang-Wook
    • The korean journal of orthodontics
    • /
    • 제40권3호
    • /
    • pp.184-194
    • /
    • 2010
  • Objective: The purpose of this study was to investigate the effect of tribochemical silica coating on the shear bond strength (SBS) of rebonded ceramic brackets using nano-filled flowable composite resin. Methods: A total of 60 premolars were prepared and divided into 4 equal groups as follows: Tribochemical silica coating (TC) + Transbond XT (XT), TC + Transbond supreme LV (LV), Sandblast treatment (SA) + XT, SA + LV. Treated ceramic brackets were rebonded on the premolars using each adhesive. All samples were tested in shear mode on a universal testing machine. Results: SBS of silica coated groups were high enough for clinical usage (TCLV: 10.82 $\pm$ 1.82 MPa, TCXT: 11.50 $\pm$ 1.72 MPa). But, SBS of the sandblast treated groups had significantly lower values than the tribochemical silica coated groups (SALV, 1.23 $\pm$ 1.16 MPa; SAXT, 1.76 $\pm$ 1.39 MPa; p < 0.05). There was no difference between the shear bond strength by type of adhesive. In the silica coated groups, 77% of the samples showed bonding failure in the adhesive. In the sandblast treated group, all bonding failures occurred at the bracket-adhesive interface. Conclusions: The result of this study suggest that newly introduced nano-filled flowable composite resin and tribochemical silica coating application on debonded ceramic bracket bases can produce appropriate bond strengths for orthodontic bonding.

Photolithographic Silicon Patterns with Z-DOL (perfluoropolyether, PFPE) Coating as Tribological Surfaces for Miniaturized Devices

  • Singh, R. Arvind;Pham, Duc-Cuong;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • 제9권1_2호
    • /
    • pp.10-12
    • /
    • 2008
  • Silicon micro-patterns were fabricated on Si (100) wafers using photolithography and DRIE (Deep Reactive Ion Etching) fabrication techniques. The patterned shapes included micro-pillars and micro-channels. After the fabrication of the patterns, the patterned surfaces were chemically modified by coating Z-DOL (perfluoropolyether, PFPE) thin films. The surfaces were then evaluated for their micro-friction behavior in comparison with those of bare Si (100) flat, Z-DOL coated Si (100) flat and uncoated Si patterns. Experimental results showed that the chemically treated (Z-DOL coated) patterned surfaces exhibited the lowest values of coefficient of friction when compared to the rest of the test materials. The results indicate that a combination of both the topographical and chemical modification is very effective in reducing the friction property. Combined surface treatments such as these could be useful for tribological applications in miniaturized devices such as Micro/Nano-Electro-Mechanical-Systems (MEMS/NEMS).

Commercialization & Process Optimization of Protective Film on Nano Silver Transparent Conductive Substrate by Means of Large Scale Roll-to-Roll Coating and Experimental Design (나노실버 투명전도소재 보호필름의 개발 및 공정 최적화와 실험 계획법을 이용한 검증)

  • Park, Kwang-Min;Lee, Ji-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제28권12호
    • /
    • pp.813-820
    • /
    • 2015
  • We have studied commercialization and process optimization of protective film on transparent conductive coated substrate, nano silver on flexible PET (poly ethylene terephthalate), by means of roll-to-roll micro-gravure coater. Nanosilver on flexible PET substrate is potential materials to replace ITO (indium tin oxide). Protective film is most important to maintain unique silver pattern on top of transparent PET. PSA pressure sensitive adhesives) was developed solely for nano silver on PET and protective film was successfully laminated. We have optimized all process conditions such as coating thickness, line speed and aging time & temperature via experimental design. Transparent conductive film and its protective film developed in this research are commercially available at this moment.

Novel Coatable Polarizer Based on Polymer-Stabilized Lyotropic Chromonic Liquid Crystals

  • Bae, Yun-Ju;Jeong, Kwang-Un;Shin, Seung-Han;Lee, Myong-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.517-519
    • /
    • 2009
  • We fabricated thin film polarizer by coating lyotropic chromonic liquid crystals (LCLCs) dissolved in anionic monomer solution. Compared to water-based technique, the new method provided many advantages such as excellent coatability, good adhesion to various substrates, and superb surface hardness.

  • PDF

Water Repellent Coating of GDL with Different Concentration of Nano-sized PTFE Solution (나노사이즈 불화탄소수지 용액 농도에 따른 GDL 발수 코팅)

  • Jeong, Moon-Gook;Song, Ki-Se;Cho, Tae-Hwan;Choi, Weon-Kyung
    • Journal of Hydrogen and New Energy
    • /
    • 제20권4호
    • /
    • pp.323-330
    • /
    • 2009
  • Efficiency of a fuel cell is determined by the generated water. If water is not removed sufficiently, water will be accumulated at GDL, which causes flooding. Therefore, water control is regarded as a crucial factor to sustain fuel ell performance. In this study, PTFE coating on the surface of carbon paper was carried out to establish optimum process for hydrophobic treatment of GDL. Carbon paper was immersed at different concentrations of nano-sized PTFE coating solution. Their characteristics were analyzed systematically by FE-SEM, water contact angle, cyclic voltamogam, XRD and FT-IR. The quantitative correlation between the amount of coated-PTFE on a carbon paper and concentration of coating solution was carefully investigated. It is suggested that the amount of PTFE-coating on a carbon paper can be managed by means of controling concentration of coating solution.

Multi-scale modelling of the blood chamber of a left ventricular assist device

  • Kopernik, Magdalena;Milenin, Andrzej
    • Advances in biomechanics and applications
    • /
    • 제1권1호
    • /
    • pp.23-40
    • /
    • 2014
  • This paper examines the blood chamber of a left ventricular assist device (LVAD) under static loading conditions and standard operating temperatures. The LVAD's walls are made of a temperature-sensitive polymer (ChronoFlex C 55D) and are covered with a titanium nitride (TiN) nano-coating (deposited by laser ablation) to improve their haemocompatibility. A loss of cohesion may be observed near the coating-substrate boundary. Therefore, a micro-scale stress-strain analysis of the multilayered blood chamber was conducted with FE (finite element) code. The multi-scale model included a macro-model of the LVAD's blood chamber and a micro-model of the TiN coating. The theories of non-linear elasticity and elasto-plasticity were applied. The formulated problems were solved with a finite element method. The micro-scale problem was solved for a representative volume element (RVE). This micro-model accounted for the residual stress, a material model of the TiN coating, the stress results under loading pressures, the thickness of the TiN coating and the wave parameters of the TiN surface. The numerical results (displacements and strains) were experimentally validated using digital image correlation (DIC) during static blood pressure deformations. The maximum strain and stress were determined at static pressure steps in a macro-scale FE simulation. The strain and stress were also computed at the same loading conditions in a micro-scale FE simulation.

Durability Characteristics of Concrete with Nano Level Ceramic Based Coating (나노합성 세라믹계 도장재를 도포한 콘크리트의 내구성능)

  • Kim, Seong-Soo;Lee, Jeong-Bae;Han, Seung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • 제19권5호
    • /
    • pp.639-646
    • /
    • 2007
  • This study performed several tests for the durability of the concrete coated with nano synthesis ceramics which do not contain volatile organic compounds harmful to environment. The tests were adhesion test on dry and humid concrete, SEM test, MIP analysis, carbonation, chloride diffusion by electronic facilitation, freezing-thawing resistance, alkaline resistance, and brine resistance test. In the adhesion test on dry and humid concrete, nano synthesis ceramics coating produced the highest results among all the coatings tested. Nano synthesis ceramics adhered solidly on the concrete surface. The adhesive strength seemed to result from the hydrogen bond between nano synthesis ceramics which are inorganic and generated by hydrolysis and re-condensation reaction and the concrete's hydrates such as calcium silicate aluminate or calcium silicate hydrate. SEM test and MIP analysis results show surface structure with finest crevices pore in the nano synthesis ceramics coating applied concretes. In the carbonation, chloride diffusion, and freezing-thawing resistance tests, the concretes with nano synthesis ceramics coating indicated the best results. Based on these test results, further progress in application of nano synthesis ceramics coatings to various concrete structures including costal structures and sewerage arrangements can be expected.