• 제목/요약/키워드: Nano- and microstructure

검색결과 561건 처리시간 0.024초

Novel approach to improve nano green mortar behaviour using nano-paper waste with nano-metakaolin

  • Radwa Defalla Abdel, Hafez;Bassam A., Tayeh;Raghda Osama Abd-Al, Ftah;Khaled, Abdelsamie
    • Advances in concrete construction
    • /
    • 제14권5호
    • /
    • pp.341-354
    • /
    • 2022
  • Treatment of solid waste building materials is a crucial method of disposal and an area of ongoing research. New standards for the treatment of solid waste building materials are necessary due to multisource features, huge quantities, and complicated compositions of solid waste. In this research, sustainable nanomaterial mixtures containing nano-paper waste (NPW) and nano-metakaolin (NMK) were used as a substitute for Portland cement. Portland cement was replaced with different ratios of NPW and NMK (0%, 4%, 8%, and 12% by weight of cement) while the cement-to-water ratio remained constant at 0.4 in all mortar mixtures. The fresh properties had a positive effect on them, and with the increase in the percentage of replacement, the fresh properties decreased. The results of compressive strength at 7 and 28 days and flexural strength at 28 days show that the nanomaterials improved the strength, but the results of NMK were better than those of NPW. The best replacement rate was 8%, followed by 4%, and finally 12% for both materials. The combination of NMK and NPW as a replacement (12% NMK + 12% NPW) showed less shrinkage than the others because of the high pozzolanic reactivity of the nanomaterials. The combination of NMK and NPW improved the microstructure by increasing the hydration volume and lowering the water in the cement matrix, as clearly observed in the C-S-H decomposition.

수열흡착법을 이용한 나노팔라듐 점코팅 활성탄 분말의 합성 및 미세조직 (Microstructure and Synthesis of Nano Palladium Spot Coated Activated Carbon Powders by Hydrothermal Attachment Method)

  • 김형철;한재길
    • 한국분말재료학회지
    • /
    • 제19권6호
    • /
    • pp.424-428
    • /
    • 2012
  • Nano Pd spot-coated active carbon powders were synthesized by a hydrothermal-attachment method (HAA) using PVP capped Pd colloid in a high pressure bomb at $250^{\circ}C$, 450 psi, respectively. The PVP capped Pd colloid was synthesized by the precipitation-redispersion method. PVP capped Pd nano particles showed the narrow size distribution and their particle sizes were less than 8nm in diameter. In the case of nano Pd-spot coated active carbon powders, nano-sized Pd particles were adhered in the active carbon powder surface by HAA method. The component of Pd was homogeneously distributed on the active carbon surface.

대기 플라즈마 용사공정을 이용한 Cu계 벌크 비정질 금속 코팅의 미세조직 분석과 나노 압입시험을 이용한 상 분석 (Microstructure Evolution of Cu-based BMG Coating during APS Process and Phase Analysis by Nano-indentation Test)

  • 김정환;강기철;윤상훈;나현택;이창희
    • Journal of Welding and Joining
    • /
    • 제27권6호
    • /
    • pp.43-48
    • /
    • 2009
  • In this study, Cu-based bulk metallic glass (BMG) coatings were deposited by atmospheric plasma spraying (APS) process with different process conditions (with- and without hydrogen gas). As adding the hydrogen gas, thermal energy in the plasma flame increased and induced difference in the melting state of the Cu-based BMG particles. The microstructure and mechanical properties of the coatings were analyzed using a scanning electron microscope (SEM) with an energy dispersive spectroscopy (EDS) and nano-indentation tester in the light of phase analysis. It was elucidated by the nano-indentation tests that un-melted region was a mainly amorphous phase which showed discrete plasticity observed as the flow serrations on the load.displacement (P - h) curves, and the curves of solidified region showed lower flow serrations as amorphous phase mingled with crystalline phase. Oxides produced during the spraying process had the highest hardness value among the phases and were well mixed with other phases resulted from the increase in melting degree.

나노 실리카를 혼입한 하이볼륨 플라이애시 콘크리트의 수화도 및 역학적 특성 (Hydration and Mechanical Properties of High-volume Fly Ash Concrete with Nano-silica)

  • 차수원;이건욱;최영철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권6호
    • /
    • pp.112-119
    • /
    • 2022
  • 최근 탄소중립에 관한 관심이 높아지면서 건설 산업에서 하이볼륨 플라이애시 콘크리트를 사용하는 연구가 다양하게 수행되고 있다. 하지만 HVFC는 초기 압축강도가 낮은 단점이 있어, 이를 개선하기 위해 나노 소재를 활용한 연구에 대한 관심이 높아지고 있다. 나노 실리카는 포졸란 재료로서 이러한 조기 강도 지연을 보완할 것으로 기대된다. 따라서 본 연구에서는 나노 실리카를 HVFC에 혼입하여 초기 수화반응에 미치는 영향과 이에 따른 미세구조의 개선에 대해 조사하였다. 초기 수화반응은 응결실험과 미소수화열을 통해 분석하였고, 재령에 따른 압축강도와 열중량 분석을 진행하였다. 미세구조 개선의 효과는 수은압입법을 통해 평가하였다. 실험결과 나노실리카를 혼입하였을 때, 초기 강도가 증가하였고 미세구조가 개선되는 것으로 나타났다.

Ti-Al-Si-Cu-N 후막의 Cu 조성에 따른 기계적 특성과 미세구조 변화에 관한 연구 (Influence of Cu Composition on the Mechanical Properties and Microstructure of Ti-Al-Si-Cu-N thick films)

  • 이연학;허성보;박인욱;김대일
    • 한국표면공학회지
    • /
    • 제56권5호
    • /
    • pp.335-340
    • /
    • 2023
  • Quinary component of 3㎛ thick Ti-Al-Si-Cu-N films were deposited onto WC-Co and Si wafer substrates by using an arc ion plating(AIP) system. In this study, the influence of copper(Cu) contents on the mechanical properties and microstructure of the films were investigated. The hardness of the films with 3.1 at.% Cu addition exhibited the hardness value of above 42 GPa due to the microstructural change as well as the solid-solution hardening. The instrumental analyses revealed that the deposited film with Cu content of 3.1 at.% was a nano-composites with nano-sized crystallites (5-7 nm in dia.) and a thin layer of amorphous Si3N4 phase.

Experimental investigation of mechanical and microstructural properties of concrete containing modified nano-Graphene Oxide

  • Maryam Ashouri;Ehsanollah Zeighami;Alireza Azarioon;Seyyed Mohammad Mirhosseini;Sattar Ebrahimi Yonesi
    • Advances in nano research
    • /
    • 제16권5호
    • /
    • pp.435-444
    • /
    • 2024
  • Microscopic defects within the microstructure of hardened cement paste are the main source of weakness in concrete. As a solution, nano-graphene oxide (GO) can be employed to improve the cement paste microstructure. However, there is a number of disadvantages, e.g., fluidity reduction and non-uniform dispersion. The present study sought to modify GO by fabricating a copolymer (PSGO) in a novel process to exploit the advantages of nano-GO while minimizing its disadvantages. Using 0.03wt% copolymerled to 38.8% higher tensile strength, 29.3% higher compressive strength and 25% higher workability. The SEM images revealed that GO and modified GO enhanced concrete by secondary hydration and bonding with C-S-H, creating a firm, integrated, and foil-like structure, and reducing the crack size and depth.

ZrO2-Ag의 복합화 공정에 따른 기계적 특성 및 미세조직 평가 (A Study of Mechanical Properties and Microstructure of ZrO2-Ag Depending on the Composite Route)

  • 여인철;한재길;강인철
    • 한국분말재료학회지
    • /
    • 제19권6호
    • /
    • pp.416-423
    • /
    • 2012
  • This paper introduces an effect of a preparing $ZrO_2$-Ag composite on its mechanical properties and microstructure. In present study, $ZrO_2$-Ag was prepared by reduction-deposition route and wetting dispersive milling method, respectively. Two type of Ag powders (nano Ag and micron Ag size, respectively) were dispersed into $ZrO_2$ powder during wetting dispersive milling in D.I. water. Each sample was sintered at $1450^{\circ}C$ for 2hr in atmosphere, and then several mechanical tests and analysis of microstructure were carried out by bending test, hardness, fracture toughness and fracture surface microstructure. As for microstructure, the Ag coated $ZrO_2$ showed homogeneously dispersed Ag in $ZrO_2$ in where pore defect did not appear. However, $ZrO_2$-nano Ag and $ZrO_2$-micro Ag composite appeared Ag aggregation and its pore defect, which carried out low mechanical property and wide error function value.

Si가 Ti-Si-N 코팅막의 기계적 성밀 및 내산화특성에 미치는 영향 (Effect of Si on Mechanical and Anti-oxidation Properties of Ti-Si-N Coating)

  • 박범희;김정애;이종영;김광호
    • 한국세라믹학회지
    • /
    • 제37권1호
    • /
    • pp.96-101
    • /
    • 2000
  • Comparative studies on microstructure, and mechanical and anti-oxidation properties between TiN and Ti-Si-N films were performed. The Ti-Si-N films were deposited on high-speed steel and silicon wafer substrates by plasma-assisted chemcial vapor deposition(PACVD) technique. The Si addition to TiN film caused to change the microstructure such as grain size refinement, randomly multi-oriented microstructure, and nano-sized codeposition of silicon nitride in the TiN matrix. The Ti-Si-N film, contains Si content of ∼7 at.%, showed the micro-hardness value of ∼3400 HK, which was higher than the pure TiN film whose hardness was ∼1500HK. The Ti-Si(7 at.%)-N film also showed much improved anti-oxidation properties compared with those of the pure TiN film. These properties were also related to the microstructure of Ti-Si(7 at.%)-N film was formed and retarded further oxidation of the nitridelayer. These properties were also related to the microstructure of Ti-Si(7 at.%)-N film which was characterized by nano-sized precipitates of silicon nitride phase in the TiN matrix and randomly oriented grains.

  • PDF

Electrodeposited Ni-W-Si3N4 alloy composite coatings: Evaluation of Scratch test

  • Gyawali, Gobinda;Joshi, Bhupendra;Tripathi, Khagendra;Lee, Soo Wohn
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.178-179
    • /
    • 2014
  • In this study, $Ni-W-Si_3N_4$ alloy composite coatings were prepared by pulse electrodeposition method using nickel sulfate bath with different contents of tungsten source, $Na_2WO_4.2H_2O$, and dispersed $Si_3N_4$ nano particles. The structure and microstructure ofcoatings was separately analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). Results indicated that nano $Si_3N_4$ and W content in alloy had remarkable effect on microstructure, microhardness and scratch resistant properties. Tungsten content in Ni-W and $Ni-W-Si_3N_4$ alloy ranged from 7 to 14 at.%. Scratch test results suggest that as compared to Ni-W only, $Ni-W-Si_3N_4$ prepared from Ni/W molar ratio of 1:1.5 dispersed with 20 g/L $Si_3N_4$ has shown the best result among different samples.

  • PDF

Characterization of Microstructure and Mechanical Properties of High-Purity Iron Added with Copper

  • Taguchi, O.;Lee, Su Yeon;Uchikoshi, M.;Isshiki, M.;Lee, Chan Gyu;Suzuki, S.;Gornakov, Vladimir S.
    • 열처리공학회지
    • /
    • 제25권1호
    • /
    • pp.22-26
    • /
    • 2012
  • An influence of the addition of copper (0.5, 1.0 and 1.5 mass% Cu) on the microstructure and mechanical properties of high purity iron (99.998 mass%) was characterized. The microstructure and microhardness of high-purity iron based samples, which were rolled at room temperature and subsequently annealed, were investigated in this work. The microstructure of the samples has been observed by electron back scattering diffraction (EBSD) and the mechanical properties have been studied by using micro-Vickers hardness test. The results of microstructural observation showed that deformation band was formed in high purity iron by rolling at room temperature, and it was recovered by annealing up to about 900 K. The microhardness results showed that the softening of high-purity iron occurred by annealing up to about 900 K, while the hardness of iron added with about 0.5-1.5 mass% copper was kept over 100 Hv and at the early time of annealing reached a maximum. The hardness of iron added with a small amount of copper may be attributed to precipitation hardening as well as solution hardening. The orientation of crystal in recrystallized grain was almost same as that of deformed grain.