• 제목/요약/키워드: Nano solution

검색결과 1,208건 처리시간 0.031초

Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen;Jafari, Ali
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.709-728
    • /
    • 2017
  • This disquisition proposes a nonlocal strain gradient beam theory for thermo-mechanical dynamic characteristics of embedded smart shear deformable curved piezoelectric nanobeams made of porous electro-elastic functionally graded materials by using an analytical method. Electro-elastic properties of embedded curved porous FG nanobeam are assumed to be temperature-dependent and vary through the thickness direction of beam according to the power-law which is modified to approximate material properties for even distributions of porosities. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Since variation of pores along the thickness direction influences the mechanical and physical properties, so in this study thermo-mechanical vibration analysis of curve FG piezoelectric nanobeam by considering the effect of these imperfections is performed. Nonlocal strain gradient elasticity theory is utilized to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field. The governing equations and related boundary condition of embedded smart curved porous FG nanobeam subjected to thermal and electric field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved piezoelectric nanobeam resting on Winkler and Pasternak foundation. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, electric voltage, coefficient of porosity, elastic foundation parameters, thermal effect, gradient index, strain gradient, elastic opening angle and slenderness ratio on the natural frequency of embedded curved FG porous piezoelectric nanobeam are successfully discussed. It is concluded that these parameters play important roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

형광 이미징 시스템의 패키징 및 강도 특성 연구 (A Study on the Fluorescence Imaging System Packaging and Optical Intensity Characteristics)

  • 김태훈;조상욱;박찬식;이학근;김두인;정명영
    • 마이크로전자및패키징학회지
    • /
    • 제23권3호
    • /
    • pp.37-41
    • /
    • 2016
  • 본 논문에서는 긴 작동거리(working distance, WD)를 가지는 근적외선 형광 이미징 시스템을 소개하고, gain, 노출시간, 작동거리, 확대배율 등 측정 변수에 의한 형광 영상의 차이에 대해 분석하였다. 노출시간이 길수록, 확대배율이 클수록 형광신호는 더욱 강해지고, gain이 클수록 형광신호도 강해지지만, 배경신호도 함께 증가하여 SBR은 나빠질 수 있다. 제안한 시스템은 레이저 조사 방식으로 인해 작동거리가 짧은 경우 레이저 조사 영역의 강도 분포가 균일하지 못해서 형광신호가 약해지며, 그에 따른 해결방안을 제안하였다.

Cyclic olefin copolymer (COC) 폴리머 프리즘을 사용한 광섬유 기반 표면 플라즈몬 공명 (SPR) 바이오 센서 (A fiber optic surface plasmon resonance (SPR) sensorusing cyclic olefin copolymer (COC) polymer prism)

  • 윤성식;이수현;안종혁;이종현
    • 센서학회지
    • /
    • 제17권5호
    • /
    • pp.369-374
    • /
    • 2008
  • A novel fiber optic surface plasmon resonance (SPR) sensor using cyclic olefin copolymer (COC) prism with the spectral modulation is presented. The SPR sensor chip is fabricated using the SU-8 photolithography, Ni-electroplating and COC injection molding process. The sidewall of the COC prism is partially deposited with Au/Cr (45/2.nm thickness) by e-beam evaporator, and the thermal bonding process is conducted for micro fluidic channels and optical fibers alignment. The SPR spectrum for a phosphate buffered saline (0.1.M PBS, pH.7.2) solution shows a distinctive dip at 1300.nm wavelength, which shifts toward longer wavelength with respect to the bovine serum albumin (BSA)concentrations. The sensitivity of the wavelength shift is $1.16\;nm{\cdot}{\mu}g^{-1}{\cdot}{\mu}l^{-1}$. From the wavelength of SPR dips, the refractive indices (RI) of the BSA solutions can be theoretically calculated using Kretchmann configuration, and the change rate of the RI was found to be $2.3{\times}10^{-5}RI{\cdot}{\mu}g^{-1}{\cdot}l^{-1}$. The realized fiber optic SPR sensor with a COC prism has clearly shown the feasibility of a new disposable, low cost and miniaturized SPR biosensor for biochemical molecular analyses.

연료전지의 수소저장용 마그네슘계 합금의 기계적 분쇄 반응에 의한 수소화 특성 평가 (Hydrogenation Study of Mg-based Alloys by mechanical Grinding Reaction for Hydrogen Storage of Fuel Cell)

  • 김호성;서희석;차재상
    • 조명전기설비학회논문지
    • /
    • 제20권6호
    • /
    • pp.69-74
    • /
    • 2006
  • [ $Mg_2Ni$ ] 합금 및 $Mg_2Ni$와 카본 혼합물 입자의 수소저장 특성에 대한 기계적 분쇄(MG, Mechanical Grinding) 처리 효과를 고온 가스상의 PCT 측정 및 전기화학적인 마이크로 전극 측정법 등에 의해 검토되었다. PCT 측정은 약 $300[^{\circ}C]$의 고온에서 실시되었으며 전기화학적인 실험은 카본-섬유로 구성된 마이크로 전극을 1M KOH 수용액 속에서 조정자를 사용하여 MG 처리한 합금 단일입자에 접촉시켰다. 그 결과 $Mg_2Ni$ 합금과 카본 혼합물 입자의 경우 가스상에서 수소 해리압이 감소하고 상온에서 전기화학적인 수소화 특성이 크게 개선되었다. 이것은 기계적 분쇄(MG) 작용에 의한 합금의 미세화 및 나노화에 기인한다고 판단된다. 즉 고온 가스상의 PCT 측정 결과 수소 해리압이 MG 처리에 의해 0.55[MPa]에서 0.42[MPa]로 감소하였으며 동일 샘플 입자에 대해 마이크로 전극에 의한 평가에서도 수소화 피크가 보다 분명하게 관찰되었다.

순환골재의 성능향상을 위한 나노실리카졸의 코팅에 관한 연구 (A Study on the Nano Silica-Sol Coating for Improving Performance of Recycled Aggregate)

  • 김성수;이정배;고지수;김일곤
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권4호
    • /
    • pp.84-90
    • /
    • 2013
  • 본 논문은 기존 순환골재 생산공장에서 새로운 설비투자나 복잡한 처리공정을 거치지 않고 비교적 용이하게 순환골재의 품질을 개선할 수 있는 효과적인 코팅처리방법을 도출하고, 도출한 코팅처리방법으로 순환골재를 코팅처리하여 그 품질개선 효과를 확인하였다. 연구목적을 달성하기 위하여 순환골재를 코팅하기 위하여 코팅처리용액중 하나인 실리케이트 용액을 경제성 있게 알맞은 농도로 희석하여 사용하였으며, 골재의 코팅방법을 달리하여 12가지 종류의 코팅골재에 대한 물성평가를 실시하였다. 또한 가장 좋은 물성을 나타낸 코팅골재를 사용하여 콘크리트를 제조하였다. 이상의 실험결과 골재를 코팅처리용액에 함침 및 건조를 반복하였을 때 골재의 품질이 가장 우수하게 나타났고, 다른 코팅방법 또한 물성이 코팅처리 전 골재보다는 향상되는 것으로 나타났으나, KS 기준에는 미치는 못하는 결과를 나타내었다. 또한, 가장 좋은 물성을 나타낸 골재를 가지고 콘크리트를 제조한 결과 설계기준강도를 만족시키는 압축강도가 측정되었으며, 설계기준강도 24MPa 이하의 도로시설물을 축조할 때 활용이 가능할 것으로 판단된다.

SiGe/Si 이종접합구조의 채널을 이용한 SOI n-MOSFET의 DC 특성 (DC Characteristic of Silicon-on-Insulator n-MOSFET with SiGe/Si Heterostructure Channel)

  • 최아람;최상식;양현덕;김상훈;이상흥;심규환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.99-100
    • /
    • 2006
  • Silicon-on-insulator(SOI) MOSFET with SiGe/Si heterostructure channel is an attractive device due to its potent use for relaxing several limits of CMOS scaling, as well as because of high electron and hole mobility and low power dissipation operation and compatibility with Si CMOS standard processing. SOI technology is known as a possible solution for the problems of premature drain breakdown, hot carrier effects, and threshold voltage roll-off issues in sub-deca nano-scale devices. For the forthcoming generations, the combination of SiGe heterostructures and SOI can be the optimum structure, so that we have developed SOI n-MOSFETs with SiGe/Si heterostructure channel grown by reduced pressure chemical vapor deposition. The SOI n-MOSFETs with a SiGe/Si heterostructure are presented and their DC characteristics are discussed in terms of device structure and fabrication technology.

  • PDF

Goethite의 합성 및 형상제어 (Synthesis and Shape Control of Goethite Nano Particles)

  • 최현빈;전명표;전승엽;황진아
    • 한국전기전자재료학회논문지
    • /
    • 제29권9호
    • /
    • pp.552-558
    • /
    • 2016
  • Goethite, ${\alpha}$-FeOOH have various applications such as absorbent, pigment and source for magnetic materials. Goethite particles were synthesized in a two step process, where $Fe(OH)_2$ were synthesized in nitrogen atmosphere using $FeSO_4$ as a raw material in the first process, and after that acicular goethite particles were obtained in an air oxidation process of $Fe(OH)_2$ in highly alkaline aqueous solution. Their phase and microstructure were investigated with XRD and FE-SEM. It was found that the morphology of goethite and the ratio of length-to-width (aspect ratio) of acicular goethite are dependent on the some factors such as R value ($OH^-/Fe^{2+}$), air flow rate and pH conditions. In particular, R value has the strongest influence on the synthesized goethite morphology. It is considered that the optimal value R is 4.5 because X-ray diffraction peaks of goethite have the highest intensity at that value. Morphology of goethite particles was controlled by air flow rates, showing that their size and aspect ratio are getting smaller and decrease, respectively as air flow rate increases. The largest goethite particle obtained is about 1,500 nm in length and 150 nm in diameter.

VCM을 이용한 나노 정밀도 스캐닝 용 초정밀 이중 스테이지 (Ultra high precision Dual stage system Using Air bearing and VCM for Nano level Scanning)

  • 김기현;권대갑;최영만;김동민;남병욱;이석원;이문구
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.103-112
    • /
    • 2005
  • This paper presents one-axis high precision scanning system and illustrates the design of modified $X-Y-{\theta}$ stage as a tracker using VCM and commercialized air bearings for it. The scanning system for 100nm resolution is composed of the 3-axis stage and one axis long stroke linear motor stage as a follower. In this study a previous proposed and presented structure of VCM for the fine stage is modified. The tracker has 3 DOF($X-Y-{\theta}$ motions by four VCM actuators which are located on the same plane. So 4 actuating forces are suggested and designed to create least pitch and roll motions. This article will show about the design especially about optimal design. The design focus of this fine stage is to have high acceleration to accomplish high throughput. The optimal design of maximizing acceleration is performed in restrained size. The most sensitive constraint of this optimal design is heat dissipation of coil. There are 5 design variables. Because the relationship between design variables and system parameters are quite complicated, it is very difficult to set design variables manually. Due to it, computer based optimal design procedure using MATLAB is used. Then, this paper also describes the procedures of selecting design variables for the optimal design and a mathematical formulation of the optimization problem. Based on the solution of the optimization problem, the final design of the stage is also presented. The results can be verified by MAXWELL. The designed stage has the acceleration of about 5 $m/s^{2}$ with 40kg total mass including wafer chuck and interferometer mirror. And the temperature of coil is increased $50^{\circ}C$. In addition, the tracker is controlled by high precision controller system with HP interferometer for it and linear scaler for the follower. At that time, the scanning system has high precision resolution about 5nm and scanning resolution about 40nm in 25mm/s constant speed

Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment

  • Ebrahimi, Farzad;Jafari, Ali;Selvamani, Rajendran
    • Advances in nano research
    • /
    • 제8권1호
    • /
    • pp.83-94
    • /
    • 2020
  • An analytical formulation and solution process for the buckling analysis of porous magneto-electro-elastic functionally graded (MEE-FG) beam via different thermal loadings and various boundary conditions is suggested in this paper. Magneto electro mechanical coupling properties of FGM beam are taken to vary via the thickness direction of beam. The rule of power-law is changed to consider inclusion of porosity according to even and uneven distribution. Pores possibly occur inside FGMs due the result of technical problems that lead to creation of micro-voids in these materials. Change in pores along the thickness direction stimulates the mechanical and physical properties. Four-variable tangential-exponential refined theory is employed to derive the governing equations and boundary conditions of porous FGM beam under magneto-electrical field via Hamilton's principle. An analytical model procedure is adopted to achieve the non-dimensional buckling load of porous FG beam exposed to magneto-electrical field with various boundary conditions. In order to evaluate the influence of thermal loadings, material graduation exponent, coefficient of porosity, porosity distribution, magnetic potential, electric voltage and boundary conditions on the critical buckling temperature of the beam made of magneto electro elastic FG materials with porosities a parametric study is presented. It is concluded that these parameters play remarkable roles on the buckling behavior of porous MEE-FG beam. The results for simpler states are proved for exactness with known data in the literature. The proposed numerical results can serve as benchmarks for future analyses of MEE-FG beam with porosity phases.

Zeta-potential을 이용한 이성분 나노유체의 분산안정도 측정 (Measurement of distribution stability of binary nanofluids by zeta-potential)

  • 이강일;정청우;김현준;정진희;강용태
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.52-57
    • /
    • 2006
  • This study investigates the distribution stability of binary nanofluids where binary mixtures such as $NH_3/H_2O$ and $H_2O/LiBr$ solution are used as a base fluid. When a little amount of certain nanosized particles is added into a basefluid, the thermal conductivity of that mixture increases greatly. Such mixtures are named 'nanofluids' where nano-particles should be distributed stably and uniformly so the distribution stability of nanoparticles in nanofluids is one of the most important factors for nanofluid application. Therefore, binary nanofluids in which binary mixtures are applied as the basefluids are considered as working fluids. The kind and the concentration of nanoparticles, and the concentration of ammonia are considered as the key parameters. The objectives of this paper are to visualize the dispersed status of particles in binary nanofluids and to find the effect of key parameters on the distribution stability in the ammonia absorption system.

  • PDF