• 제목/요약/키워드: Nano smart material

검색결과 58건 처리시간 0.023초

A comprehensive review on the modeling of smart piezoelectric nanostructures

  • Ebrahimi, Farzad;Hosseini, S.H.S.;Singhal, Abhinav
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.611-633
    • /
    • 2020
  • In this paper, a comprehensive review of nanostructures that exhibit piezoelectric behavior on all mechanical, buckling, vibrational, thermal and electrical properties is presented. It is firstly explained vast application of materials with their piezoelectric property and also introduction of other properties. Initially, more application of material which have piezoelectric property is introduced. Zinc oxide (ZnO), boron nitride (BN) and gallium nitride (GaN) respectively, are more application of piezoelectric materials. The nonlocal elasticity theory and piezoelectric constitutive relations are demonstrated to evaluate problems and analyses. Three different approaches consisting of atomistic modeling, continuum modeling and nano-scale continuum modeling in the investigation atomistic simulation of piezoelectric nanostructures are explained. Focusing on piezoelectric behavior, investigation of analyses is performed on fields of surface and small scale effects, buckling, vibration and wave propagation. Different investigations are available in literature focusing on the synthesis, applications and mechanical behaviors of piezoelectric nanostructures. In the study of vibration behavior, researches are studied on fields of linear and nonlinear, longitudinal and transverse, free and forced vibrations. This paper is intended to provide an introduction of the development of the piezoelectric nanostructures. The key issue is a very good understanding of mechanical and electrical behaviors and characteristics of piezoelectric structures to employ in electromechanical systems.

A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment

  • Hajmohammad, Mohammad Hadi;Zarei, Mohammad Sharif;Farrokhian, Ahmad;Kolahchi, Reza
    • Advances in nano research
    • /
    • 제6권4호
    • /
    • pp.299-321
    • /
    • 2018
  • A layerwise shear deformation theory is applied in this paper for buckling analysis of piezoelectric truncated conical shell. The core is a multiphase nanocomposite reinforced by carbon nanotubes (CNTs) and carbon fibers. The top and bottom face sheets are piezoelectric subjected to 3D electric field and external voltage. The Halpin-Tsai model is used for obtaining the effective moisture and temperature dependent material properties of the core. The proposed layerwise theory is based on Mindlin's first-order shear deformation theory in each layer and results for a laminated truncated conical shell with three layers considering the continuity boundary condition. Applying energy method, the coupled motion equations are derived and analyzed using differential quadrature method (DQM) for different boundary conditions. The influences of some parameters such as boundary conditions, CNTs weight percent, cone semi vertex angle, geometrical parameters, moisture and temperature changes and external voltage are investigated on the buckling load of the smart structure. The results show that enhancing the CNTs weight percent, the buckling load increases. Furthermore, increasing the moisture and temperature changes decreases the buckling load.

Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.281-301
    • /
    • 2017
  • In this disquisition, an exact solution method is developed for analyzing the vibration characteristics of magneto-electro-elastic functionally graded (MEE-FG) beams by considering porosity distribution and various boundary conditions via a four-variable shear deformation refined beam theory for the first time. Magneto-electroelastic properties of porous FG beam are supposed to vary through the thickness direction and are modeled via modified power-law rule which is formulated using the concept of even and uneven porosity distributions. Porosities possibly occurring inside functionally graded materials (FGMs) during fabrication because of technical problem that lead to creation micro-voids in FG materials. So, it is necessary to consider the effect of porosities on the vibration behavior of MEE-FG beam in the present study. The governing differential equations and related boundary conditions of porous MEE-FG beam subjected to physical field are derived by Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factor. An analytical solution procedure is used to achieve the natural frequencies of porous-FG beam supposed to magneto-electrical field which satisfies various boundary conditions. A parametric study is led to carry out the effects of material graduation exponent, porosity parameter, external magnetic potential, external electric voltage, slenderness ratio and various boundary conditions on dimensionless frequencies of porous MEE-FG beam. It is concluded that these parameters play noticeable roles on the vibration behavior of MEE-FG beam with porosities. Presented numerical results can be applied as benchmarks for future design of MEE-FG structures with porosity phases.

고출력 슁글드 태양광 모듈 제작을 위한 스트링 연결에 관한 연구 (Study on Shingled String Interconnection for High Power Solar Module)

  • 김주휘;김정훈;정채환;최원용;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.449-453
    • /
    • 2021
  • Interest and investment in renewable energy have increased worldwide, highlighting the need for renewable energy. Solar energy was the most promising energy of all renewable energy sources, and it has the highest investment value. Because photovoltaics require a certain amount of area for installation, high density and high output performance are required. Shingled module is a promising technology in that they are featured by higher density and higher output compared to the conventional modules. Shingled technology uses a laser scribing to divide solar cells that are to be bonded with electrically conductive adhesive (ECA) to produce and connect strings, which has a higher output in the same area than the conventional modules. In the process of producing solar modules, metal ribbons are used to interconnect cells, but they are also needed for string connections in shingled solar cells. Accordingly, in this study, we researched the interconnection that best suits the connector that joins the string to the string. The module outputs produced under the conditions of the string interconnection were compared and analyzed.

압전 에너지 수확기의 성능 향상을 위한 복합재료 기반 소재 및 공정 기술 검토 (Composite-Based Material and Process Technology Review for Improving Performance of Piezoelectric Energy Harvester)

  • 김건수;장지운;김성륜
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.357-372
    • /
    • 2021
  • 에너지 수확장치는 석유자원의 고갈로 인한 자원난을 해결할 수 있는 대안으로 유망하다고 알려져 있다. 기계적 움직임을 전기 에너지로 전환할 수 있는 압전 소자들의 한계(환경오염 및 낮은 기계적 특성)를 극복하기 위하여, 고분자 기지재 기반 복합재료 압전 에너지 수확장치에 대한 많은 연구들이 수행되었다. 본 논문에서는 사용된 재료 및 공정에 기초하여, 보고된 압전 복합재료의 출력 성능 및 관련된 응용 분야를 검토하였다. 압전 필러는 티탄산 지르콘산 연 및 티탄산바륨 기반의 세라믹 필러뿐만 아니라, 친환경, 생체적합성 및 유연성 측면에서 유리한 산화아연을 검토하였다. 기지재는 폴리비닐리덴플로오라이드 및 공중합체로 구성된 압전 고분자 및 에폭시 및 폴리디메틸실록산 기반의 유연한 고분자로 분류하여 복합재료의 압전 시너지 및 높은 외력 적용에 의한 압전 출력 향상을 논의하였다. 또한, 금속 혹은 탄소 소재 기반 2차 필러의 적용에 의한 복합재료의 전도성 혹은 기계적 특성의 향상이 압전 수확장치의 출력 성능에 미치는 영향을 복합재료의 구조 측면에서 검토하였다. 향상된 성능으로 소형 전자기기, 스마트 센서, 의학 분야 등에 응용 가능한 복합재료 기반 압전 수확장치는 미래의 일상에서 접할 수 있는 무선 전자 장치의 전원으로써 잠재적인 통찰을 제공할 수 있다.

A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory

  • Mokhtar, Youcef;Heireche, Houari;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.397-405
    • /
    • 2018
  • In this paper, a novel simple shear deformation theory for buckling analysis of single layer graphene sheet is formulated using the nonlocal differential constitutive relations of Eringen. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Nonlocal elasticity theory is employed to investigate effects of small scale on buckling of the rectangular nano-plate. The equations of motion of the nonlocal theories are derived and solved via Navier's procedure for all edges simply supported boundary conditions. The results are verified with the known results in the literature. The influences played by Effects of nonlocal parameter, length, thickness of the graphene sheets and shear deformation effect on the critical buckling load are studied. Verification studies show that the proposed theory is not only accurate and simple in solving the buckling nanoplates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

A machine learning-based model for the estimation of the critical thermo-electrical responses of the sandwich structure with magneto-electro-elastic face sheet

  • Zhou, Xiao;Wang, Pinyi;Al-Dhaifallah, Mujahed;Rawa, Muhyaddin;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • 제12권1호
    • /
    • pp.81-99
    • /
    • 2022
  • The aim of current work is to evaluate thermo-electrical characteristics of graphene nanoplatelets Reinforced Composite (GNPRC) coupled with magneto-electro-elastic (MEE) face sheet. In this regard, a cylindrical smart nanocomposite made of GNPRC with an external MEE layer is considered. The bonding between the layers are assumed to be perfect. Because of the layer nature of the structure, the material characteristics of the whole structure is regarded as graded. Both mechanical and thermal boundary conditions are applied to this structure. The main objective of this work is to determine critical temperature and critical voltage as a function of thermal condition, support type, GNP weight fraction, and MEE thickness. The governing equation of the multilayer nanocomposites cylindrical shell is derived. The generalized differential quadrature method (GDQM) is employed to numerically solve the differential equations. This method is integrated with Deep Learning Network (DNN) with ADADELTA optimizer to determine the critical conditions of the current sandwich structure. This the first time that effects of several conditions including surrounding temperature, MEE layer thickness, and pattern of the layers of the GNPRC is investigated on two main parameters critical temperature and critical voltage of the nanostructure. Furthermore, Maxwell equation is derived for modeling of the MEE. The outcome reveals that MEE layer, temperature change, GNP weight function, and GNP distribution patterns GNP weight function have significant influence on the critical temperature and voltage of cylindrical shell made from GNP nanocomposites core with MEE face sheet on outer of the shell.

정전방사를 통한 환경기능성 미세섬유 제조 및 특성분석 - 실내환경 CO2 포집용 건식흡착소재 (Preparation and characterization of Environmental Functional Nanofibers by electrospun nanofibers-Dry sorption material for indoor CO2 capture)

  • 김은주;박경렬
    • 한국산학기술학회논문지
    • /
    • 제19권12호
    • /
    • pp.938-943
    • /
    • 2018
  • 고전압 정전방사 장치를 이용하여 나노 섬유를 직조하였다. 정전방사장치는 액상의 고분자를 방출하는 펌프, 노즐과 노즐회전자 등의 부품으로 구성되어 있으며, 알루미늄 재질의 포집판을 설치하여 방사되는 섬유를 포집하였다. 정전방사방법을 이용하여 매우 미세한 나노굵기의 섬유를 제조하고,화학적으로 활성화시킴으로써 미세공을 형성함과 동시에 화학작용기를 분포시켜 저농도의 이산화탄소 분자를 포집하는 실험을 실시하여 실내공기중에 존재하는 저농도 이산화탄소 가스를 포집하는 섬유상 흡착제를 제조해보고자 하였다. 이러한 화학작용기는 이산화탄소 분자와의 상호 인력을 향상시킬 수 있고, 궁극적으로는 포집효율을 증가시킬 수 있었다. 정전방사식으로 제조한 섬유의 굵기는 250-350 nm 였으며, 생성된 미세공은 0.6에서 0.7 nm 이고, 평균 비표면적은 $569m^2/g$였다. 순수 이산화탄소 흐름과 실내공간에서 흔히 발견되는 0.3% 수준의 농도에 대하여 포집실험을 한 결과, 각각 1.08 mmol/g과 0.013 mmol/g에서 2.2 mmol/g과 0.144 mmol/g으로 향상되었다. 이러한 포집량 증가는 나노섬유상 흡착제의 비표면적 대비 미세공의 비율과 관계가 있음이 밝혀졌다. 특히 화학적 상호인력의 특성을 활용하여 저농도에서의 선택도를 향상시킬 수 있음을 간접적으로 파악하였다.