• Title/Summary/Keyword: Nano smart material

Search Result 56, Processing Time 0.026 seconds

Nonlinear forced vibration of sandwich plate with considering FG core and CNTs reinforced nano-composite face sheets

  • Rostami, Rasoul;Rahaghi, Mohsen Irani;Mohammadimehr, Mehdi
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.185-193
    • /
    • 2020
  • Nonlinear vibration of sandwich plate with functionally graded material (FGM) core and carbon nano tubes reinforced (CNTs) nano-composite layers by considering temperature-dependent material properties are studied in this paper. Base on Classical plate theory (CPT), the governing partial differential equations of motion for sandwich plate are derived using Hamilton principle. The Galerkin procedure and multiple scales perturbation method are used to find relation between nonlinear frequency and amplitude of vibration response. The dynamic responses of the sandwich plate are also investigated in both time and frequency domains. Then, the effects of nonlinearity, excitation, power law index of FG core, volume fraction of carbon nanotube, the function of material variations of FG core, temperature changes, scale transformation parameter and damping factor on the frequency responses are investigated.

Nano Carbon Material Based Electrochemical Actuators (탄소 나노 재료 기반의 전기-화학적 구동기)

  • Cha, Ju-Young;Kang, In-Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1251-1258
    • /
    • 2011
  • With the help of nanoscale materials like carbon nanotube (CNT), there is the potential to develop new actuators that will provide higher work per cycle than previous actuator technologies, and generate much higher mechanical strength. In this study, the electrochemical actuation characteristics of nano carbon materials were experimentally studied to develop electrochemical actuators. The electrochemical actuators were composed of aqueous NaCl electrolyte and their actuating electrodes were made of multi-walled carbon nanotube (MWCNT)/polystyrene composite and graphene respectably. Actuation is proportional to charging transfer rate, and the electrolysis with an AC voltage input has very complex characteristics. To quantify the actuation property, the strain responses and output model were studied based on electrochemical effects between the nano carbon films and the electrolyte.

Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment

  • Muhammad, Ahmed K.;Hamad, Luay Badr;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.237-257
    • /
    • 2019
  • The present article researches large-amplitude thermal free vibration characteristics of nonlocal two-phase piezo-magnetic nano-size beams having geometric imperfections by considering piezoelectric reinforcement scheme. The piezoelectric reinforcement can cause an enhanced vibration behavior of smart nanobeams under magnetic field. All previous studies on vibrations of piezoelectric-magnetic nano-size beams ignore the influences of geometric imperfections which are crucial since a nanobeam is not always ideal or perfect. Nonlinear governing equations of a smart nanobeam are derived based on classical beam theory and an analytical trend is provided to obtain nonlinear vibration frequency. This research shows that changing the volume fraction of piezoelectric phase in the material has a great influence on vibration behavior of smart nanobeam under electric and magnetic fields. Also, it can be seen that nonlinear vibration behaviors of smart nanobeam is dependent on the magnitude of exerted electric voltage, magnetic imperfection amplitude and substrate constants.

Developing Artificial Neurons Using Carbon Nanotubes Smart Composites (탄소나노튜브 스마트 복합소재를 이용한 인공뉴런 개발 연구)

  • Kang, In-Pil;Baek, Woon-Kyung;Choi, Gyeong-Rak;Jung, Joo-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.136-141
    • /
    • 2007
  • This paper introduces an artificial neuron which is a nano composite continuous sensor. The continuous nano sensor is fabricated as a thin and narrow polymer film sensor that is made of carbon nanotubes composites with a PMMA or a silicone matrix. The sensor can be embedded onto a structure like a neuron in a human body and it can detect deteriorations of the structure. The electrochemical impedance and dynamic strain response of the neuron change due to deterioration of the structure where the sensor is located. A network of the long nano sensor can form a structural neural system to provide large area coverage and an assurance of the operational health of a structure without the need for actuators and complex wave propagation analyses that are used with other methods. The artificial neuron is expected to effectively detect damage in large complex structures including composite helicopter blades and composite aircraft and vehicles.

  • PDF

Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Hani, Fatima Masood
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.77-87
    • /
    • 2020
  • By employing a quasi-3D plate formulation, the present research studies static stability of magneto-electro-thermo-elastic functional grading (METE-FG) nano-sized plates. Accordingly, influences of shear deformations as well as thickness stretching have been incorporated. The gradation of piezo-magnetic and elastic properties of the nano-sized plate have been described based on power-law functions. The size-dependent formulation for the nano-sized plate is provided in the context of nonlocal elasticity theory. The governing equations are established with the usage of Hamilton's rule and then analytically solved for diverse magnetic-electric intensities. Obtained findings demonstrate that buckling behavior of considered nanoplate relies on the variation of material exponent, electro-magnetic field, nonlocal coefficient and boundary conditions.

Nano Convergence Systems for Smart Living

  • Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.55-55
    • /
    • 2015
  • Today, engineers are facing new set of challenges that are quite different from the conventional ones. Information technologies are rapidly commoditizing while the paths beyond the current roadmaps became uncertain as various technologies have been pushed to their limits. Along with these changes in IT ecosystems, grand challenges such as global security, health, sustainability, and energy increasingly require trans-disciplinary solutions that go beyond the traditional arenas in STEM (Science, Technology, Engineering and Mathematics). Addressing these needs is shifting engineering education and research to a new paradigm where the emphasis is placed on the consilience for holistic and system level understanding and the convergence of technology with AHSD (arts, humanities, social science, and design). At the center of this evolutionary convergence, nanotechnologies are enabling novel functionalities such as bio-compatibility, flexibility, low power, and sustainability while on a mission to meet scalability and low cost for smart electronics, u-health, sensing networks, and self-sustainable energy systems. This talk introduces the efforts of convergence based on the emerging nano technology tool sets in the newly launched School of Integrated Technology and the Yonsei Institute of Convergence Technology at Yonsei International Campus. While the conventional devices have largely depended upon the inherent material properties, the newer devices are enabled by nanoscale dimensions and structures in increasingly standardized and scalable fabrication platform. Localized surface plasmon resonance in 0 dimensional nano particles and structures leads to subwavelength confinement and enhanced near-field interactions enabling novel field of metal photonics for sensing and integrated photonic applications [1,2]. Unique properties offered by 1 dimensional nanowires and 2 dimensional materials and structures can enable novel electronic, photonic, nano-bio, and biomimetic applications [3-5]. These novel functionalities offered by the emerging nanotechnologies are continuously finding pathways to be part of smart systems to improve the overall quality of life.

  • PDF

Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams

  • Ebrahimi, Farzad;Shafiei, Navvab
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.837-857
    • /
    • 2016
  • In the present study, for first time the size dependent vibration behavior of a rotating functionally graded (FG) Timoshenko nanobeam based on Eringen's nonlocal theory is investigated. It is assumed that the physical and mechanical properties of the FG nanobeam are varying along the thickness based on a power law equation. The governing equations are determined using Hamilton's principle and the generalized differential quadrature method (GDQM) is used to obtain the results for cantilever boundary conditions. The accuracy and validity of the results are shown through several numerical examples. In order to display the influence of size effect on first three natural frequencies due to change of some important nanobeam parameters such as material length scale, angular velocity and gradient index of FG material, several diagrams and tables are presented. The results of this article can be used in designing and optimizing elastic and rotary type nano-electro-mechanical systems (NEMS) like nano-motors and nano-robots including rotating parts.

Preparation of Cucurbituril Anchored Silica Gel by Cross Polymerization and Its Chromatographic Applications

  • Cheong, Won-Jo;Go, Joung-Ho;Baik, Yoon-Suk;Kim, Sung-Soon;Nagarajan, Erumaipatty R;Selvapalam, Narayanan;Ko, Young-Ho;Kim, Ki-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1941-1945
    • /
    • 2008
  • A new chromatographic stationary phase has been prepared by cross polymerization between allylsilica and perallyloxycucurbit[6]uril and characterized by elemental analysis and FT-IR spectroscopy. The double endcapping has been proven to improve the separation efficiency of the cucurbituril-based stationary phase material. The first end-capping was carried out when allylsilica was made. The second end-capping was done as the final step of the whole process, and the use of a mixture of hexamethyldisilazane (HMDS) and trimethylchlorosilane (TMCS) as an end-capping reagent was found better than the use of only HMDS or TMCS. Our stationary phase has shown generally good results in separation of nonpolar and polar analytes. This phase showed even better separation performance than the commercial C18 phase for the case where hostguest chemistry was properly incorporated in solute retention.

Nonlinear static analysis of smart beams under transverse loads and thermal-electrical environments

  • Ali, Hayder A.K.;Al-Toki, Mouayed H.Z.;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • v.7 no.2
    • /
    • pp.99-112
    • /
    • 2022
  • This research has been devoted to examine nonlinear static bending analysis of smart beams with nano dimension exposed to thermal environment. The beam elastic properties are corresponding to piezo-magnetic material of different compositions. The large deflection analysis of the beam has been performed assuming that the beam is exposed to transverse uniform pressure. Based on the rule of Hamilton, the governing equations have been derived for a nonlocal thin beam and solved using differential quadrature method. Temperature variation effect on nonlinear deflection of the smart beams has been studied. Also, the beam deflection is shown to be affected by electric voltage, magnetic intensity and material composition.

Dynamic modeling of smart magneto-electro-elastic curved nanobeams

  • Ebrahimi, Farzad;Barati, Mohammad Reza;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.145-155
    • /
    • 2019
  • In this article, the influence of small scale effects on the free vibration response of curved magneto-electro-elastic functionally graded (MEE-FG) nanobeams has been investigated considering nonlocal elasticity theory. Power-law is used to judge the through thickness material property distribution of MEE nanobeams. The Euler-Bernoulli beam model has been adopted and through Hamilton's principle the Nonlocal governing equations of curved MEE-FG nanobeam are obtained. The analytical solutions are obtained and validated with the results reported in the literature. Several parametric studies are performed to assess the influence of nonlocal parameter, magnetic potential, electric voltage, opening angle, material composition and slenderness ratio on the dynamic behaviour of MEE curved nanobeams. It is believed that the results presented in this article may serve as benchmark results in accurate analysis and design of smart nanostructures.