• 제목/요약/키워드: Nano silica

검색결과 410건 처리시간 0.034초

Geotechnical behaviour of nano-silica stabilized organic soil

  • Kannan, Govindarajan;Sujatha, Evangelin Ramani
    • Geomechanics and Engineering
    • /
    • 제28권3호
    • /
    • pp.239-253
    • /
    • 2022
  • Suitable techniques to stabilize organic soil and improve its engineering behaviour are in demand. Despite various alternatives, nano-additives proved to be an effective stabilizer owing to their strength enhancing properties. The study focuses on using nano-silica as a potential stabilizer to improve organic silt. Soil was treated with four dosages of nano-silica namely 0.2%, 0.4%, 0.6% and 0.8% of dry weight of the soil. Nano-silica treated soil showed a strength increase of nearly 25% at a dosage of 0.4% after curing for two hours. Strength of the treated soil improved with age. Strength improved by nearly 62.9% after 28 days of curing and 221.4% after 180 days of curing due to formation of Calcium - Silicate - Hydrate (CSH) gel in the soil matrix. Dosage of 0.6% nano-silica is observed to be the optimum dosage. Coefficient of permeability and compression index showed an increase by 13.32 and 5.5 times respectively owing to aggregation of particles and creation of void spaces as visualized from the scanning electron micrographs. Further model foundation study and numerical parametric studies using PLAXIS 2D indicate that optimized and economic results can be obtained by varying the additive dosage with depth.

Improving the flexural toughness behavior of R.C beams using micro/nano silica and steel fibers

  • Eisa, Ahmed S.;Shehab, Hamdy K.;El-Awady, Kareem A.;Nawar, Mahmoud T.
    • Advances in concrete construction
    • /
    • 제11권1호
    • /
    • pp.45-58
    • /
    • 2021
  • Experimental investigation has been conducted to study the effect of using Micro/Nano Silica in presence of steel fibers on improving the static response of reinforced concrete beams. Twenty-one mixtures were prepared with micro silica (MS), Nano silica (NS) and steel fibers (SFs) at different percentages. Cement was replaced by 10% and 15% of Micro silica and 1%, 2% and 3% of Nano silica in the presence of steel fibers at different volume fractions 0%, 1%, and 2%. 258 concrete samples, (126 cubes, 63 cylinders, 63 prisms, and six R.C beams), were investigated experimentally in two stages. The first stage was to investigate the mechanical properties of the prepared mixtures. The second stage was to study the static behavior of R.C beams, using the designed concrete mixtures, under a four-point flexural test. The results showed that replacing cement by (10% MS and 1% NS) produces the optimum mix with a significant improvement in the mechanical properties and the response of R.C beams under static loads. In addition, incorporating steel fibers at different volume fractions have a considerable effect on the flexural toughness of concrete mixes.

Influence of nano-silica on the failure mechanism of concrete specimens

  • Nazerigivi, Amin;Nejati, Hamid Reza;Ghazvinian, Abdolhadi;Najigivi, Alireza
    • Computers and Concrete
    • /
    • 제19권4호
    • /
    • pp.429-434
    • /
    • 2017
  • Failure of basic structures material is usually accompanied by expansion of interior cracks due to stress concentration at the cracks tip. This phenomenon shows the importance of examination of the failure behavior of concrete structures. To this end, 4 types of mortar samples with different amounts of nano-silica (0%, 0.5%, 1%, and 1.5%) were made to prepare twelve $50{\times}50{\times}50mm$ cubic samples. The goal of this study was to describe the failure and micro-crack growth behavior of the cement mortars in presence of nano-silica particles and control mortars during different curing days. Failure of mortar samples under compressive strength were sensed with acoustic emission technique (AET) at different curing days. It was concluded that the addition of nano-silica particles could modify failure and micro-crack growth behavior of mortar samples. Also, monitoring of acoustic emission parameters exposed differences in failure behavior due to the addition of the nanoparticles. Mortar samples of nano-silica particles revealed stronger shear mode characteristics than those without nanoparticles, which revealed high acoustic activity due to heterogeneous matrix. It is worth mentioning that the highest compressive strength for 3 and 7 test ages obtained from samples with the addition of 1.5% nano-silica particles. On the other hand maximum compressive strength of 28 curing days obtained from samples with 1% combination of nano-silica particles.

Effect of Nano-silicate on the Mechanical, Electrical and Thermal Properties of Epoxy/Micro-silica Composite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권3호
    • /
    • pp.153-156
    • /
    • 2012
  • In order to develop electrical insulation materials, epoxy/micro-silica composite (EMC) and epoxy/micro-silica/nano-silicate composite (EMNC) were prepared, and their tensile and flexural strength, AC insulation breakdown strength and thermal conductivity and thermal expansion coefficient were compared. Nano-silicate was prepared in an epoxy matrix by our AC electric field process. All properties of the neat epoxy were improved by the addition of micro-silica, which was improved much further by the addition of nano-silicate to the EMC system.

Machine learning models for predicting the compressive strength of concrete containing nano silica

  • Garg, Aman;Aggarwal, Paratibha;Aggarwal, Yogesh;Belarbi, M.O.;Chalak, H.D.;Tounsi, Abdelouahed;Gulia, Reeta
    • Computers and Concrete
    • /
    • 제30권1호
    • /
    • pp.33-42
    • /
    • 2022
  • Experimentally predicting the compressive strength (CS) of concrete (for a mix design) is a time-consuming and laborious process. The present study aims to propose surrogate models based on Support Vector Machine (SVM) and Gaussian Process Regression (GPR) machine learning techniques, which can predict the CS of concrete containing nano-silica. Content of cement, aggregates, nano-silica and its fineness, water-binder ratio, and the days at which strength has to be predicted are the input variables. The efficiency of the models is compared in terms of Correlation Coefficient (CC), Root Mean Square Error (RMSE), Variance Account For (VAF), Nash-Sutcliffe Efficiency (NSE), and RMSE to observation's standard deviation ratio (RSR). It has been observed that the SVM outperforms GPR in predicting the CS of the concrete containing nano-silica.

Effects of Nano-silica/Nano-alumina on Mechanical and Physical Properties of Polyurethane Composites and Coatings

  • Swain, Sarojini;Sharma, Ram Avatar;Bhattacharya, Subhendu;Chaudhary, Lokesh
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권1호
    • /
    • pp.1-8
    • /
    • 2013
  • The present approach shows the use of nano-silica/nano-alumina in polyurethane (PU) matrix, which lead to significant improvements in the mechanical and thermal properties of the nano-composite. It is observed that with incorporation of 1% of nano-alumina into the PU matrix, there is an improvement in the tensile strength of around 50%, and for nano-silica the improvement is around 41%, at the same concentration. The morphological data shows that above 3% of the nano particles there are agglomerations in the nanocomposite. Again with the absorption of moisture, there is a decrease in the thermal and mechanical properties of the PU resin, but in this research work it is observed that with the incorporation of the nano particles, in the presence of absorbed moisture there is an improvement in mechanical and thermal properties of the composite, over that of the PU matrix.

Corrosion resistant self-compacting concrete using micro and nano silica admixtures

  • Jalal, Mostafa
    • Structural Engineering and Mechanics
    • /
    • 제51권3호
    • /
    • pp.403-412
    • /
    • 2014
  • In this paper, enhancement of corrosion and chloride resistance of high performance self compacting concrete (SCC) through incorporating nanosilica into the binder has been investigated. For this purpose, different mixtures were designed with different amounts of silica fume and nano silica admixtures. Different binder contents were also investigated to observe the binder content effect on the concrete properties. Corrosion behavior was evaluated by chloride penetration and resitivity tests. Water absorption and capillary absorption were also measured as other durability-related properties. The results showed that water absorption, capillary absorption and Cl ion percentage decreased rather significantly in the mixtures containing admixtures especially blend of silica fume and nano silica. By addition of the admixtures, resistivity of the SCC mixtures increased which can lead to reduction of corrosion probability.

Micro and Nano Engineered High Volume Ultrafine Fly Ash Cement Composite with and without Additives

  • Roychand, R.;De Silva, S.;Law, D.;Setunge, S.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권1호
    • /
    • pp.113-124
    • /
    • 2016
  • This paper presents the effect of silica fume and nano silica, used individually and in combination with the set accelerator and/or hydrated lime, on the properties of class F high volume ultra fine fly ash (HV-UFFA) cement composites, replacing 80 % of cement (OPC). Compressive strength test along with thermogravimetric analysis, X-ray diffraction and scanning electron microscopy were undertaken to study the effect of various elements on the physico-chemical behaviour of the blended composites. The results show that silica fume when used in combination with the set accelerator and hydrated lime in HV-UFFA cement mortar, improves its 7 and 28 day strength by 273 and 413 %, respectively, compared to the binary blended cement fly ash mortar. On the contrary, when nano silica is used in combination with set accelerator and hydrated lime in HV-UFFA cement mortar, the disjoining pressure in conjunction with the self-desiccation effect induces high early age micro cracking, resulting in hindering the development of compressive strength. However, when nano silica is used without the additives, it improves the 7 and 28 day strengths of HV-UFFA cement mortar by 918 and 567 %, respectively and the compressive strengths are comparable to that of OPC.

에폭시/마이크로실리카/나노실리카 혼합 콤포지트의 열적, 전기적 특성 (Thermal, Electrical Properties for Epoxy/Microsilica/Nanosilica Composites)

  • 강근배;권순석;박재준
    • 한국전기전자재료학회논문지
    • /
    • 제25권10호
    • /
    • pp.779-785
    • /
    • 2012
  • The epoxy/micro-and nano-mixed silica composites(EMNC) systems were prepared and the AC insulation breakdown strength was evaluated. Glass transition temperature (Tg) and crosslink density were also measured by dynamic mechanical analyzer(DMA) in order to correlate them with the electrical and mechanical properties, and the effect of silane coupling agent on the electrical properties was also studied. Electrical properties and crosslink density of epoxy/micro-silica composite were noticeably improved by addition of nano-silica and silane coupling agent, and the highest breakdown strength was obtained by addition of 0.5~5 phr of nano-silica and 2.5 phr of silane coupling agent, and the highest tensile and flexural strength were obtained by addition of 2.5 phr of nano-silica.

콜로이달 실리카와 실란으로부터 합성된 나노하이브리드 코팅 박막의 특성 (Properties of Nano-Hybrid Coating Films Synthesized from Colloidal Silica-Silane)

  • 나문경;안명상;강동필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.232-233
    • /
    • 2006
  • In recent years the interest in organic/inorganic hybrid materials has increased at a fast rate. Nano organic-inorganic hybrid composites have shown advantages for preparing hard coating layers. Especially, nano hybrid composite has low environmental pollution. It has high transparency, hardness, toughness, thermal dissociation temperature, hydrophobicity by using nano sized inorganic material. There are many ways in which these materials may be synthesized, a typical one being the use of silica and silanes using the sol-gel process. The structure of sol-gel silica evolves as a result of these successive hydrolysis and condensation reactions and the subsequent drying and curing. The sol-gel reactions are catalyzed by acids and produce silica sol solutions. The silica sol grows until they reach a size where a gel transition occurs and a solid-like gel is formed. Colloidal silica(CS)/silane sol solutions were synthesized in variation with parameters such as different acidity and reaction time. In order to understand their physical and chemical properties, sol-gel coating films were fabricated on glass. From all sol-gel solutions, seasoning effect of sol-gel coating layer on glass was observed.

  • PDF