• Title/Summary/Keyword: Nano sheet

Search Result 247, Processing Time 0.029 seconds

MoS2 Layers Decorated RGO Composite Prepared by a One-Step High-Temperature Solvothermal Method as Anode for Lithium-Ion Batteries

  • Liu, Xuehua;Wang, Bingning;Liu, Jine;Kong, Zhen;Xu, Binghui;Wang, Yiqian;Li, Hongliang
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850135.1-1850135.8
    • /
    • 2018
  • A one-step high-temperature solvothermal approach to the synthesis of monolayer or bilayer $MoS_2$ anchored onto reduced graphene oxide (RGO) sheet (denoted as $MoS_2/RGO$) is described. It was found that single-layered or double-layered $MoS_2$ were synthesized directly without an extra exfoliation step and well dispersed on the surface of crumpled RGO sheets with random orientation. The prepared $MoS_2/RGO$ composites delivered a high reversible capacity of $900mAhg^{-1}$ after 200 cycles at a current density of $200mAg^{-1}$ as well as good rate capability as anode active material for lithium ion batteries. This one-step high-temperature hydrothermal strategy provides a simple, cost-effective and eco-friendly way to the fabrication of exfoliated $MoS_2$ layers deposited onto RGO sheets.

Thermal Stability Improvement of the Ni Germano-silicide formed by a novel structure Ni/Co/TiN using 2-step RTP for Nano-Scale CMOS Technology

  • Huang Bin-Feng;Oh Soon-Young;Yun Jang-Gn;Kim Yong-Jin;Ji Hee-Hwan;Kim Yong-Goo;Cha Han-Seob;Heo Sang-Bum;Lee Jeong-Gun;Kim Yeong-Cheol;Lee Hi-Deok
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.371-374
    • /
    • 2004
  • In this paper, Ni Germane-silicide formed on undoped $Si_{0.8}Ge_{0.2}$ as well as source/drain dopants doped $Si_{0.8}Ge_{0.2}$ was characterized by the four-point probe for sheet resistance. x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FESEM). Low resistive NiSiGe is formed by one step RTP (Rapid thermal processing) with temperature range at $500{\~}700^{\circ}C$. To enhance the thermal stability of Ni Germane-silicide, Ni/Co/TiN structure with different Co concentration were studied in this work. Low sheet resistance was obtained by Ni/Co/TiN structure with high Co concentration using 2-step RTP and it almost keeps the same low sheet resistance even after furnace annealing at $650^{\circ}C$ for 30 min.

  • PDF

High Conductivity of Transparent SWNT Films on PET by Ionic Doping

  • Min, Hyung-Seob;Kim, Sang-sig;Choi, Won-Kook;Lee, Jeon-Kook
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.65-65
    • /
    • 2011
  • Single-well carbon nanotubes (SWNT) have been proposed as a promising candidate for various applications owing to their excellent properties. In particular, their fascinating electrical and mechanical properties could provide a new area for the development of advanced engineering materials. A transparent conductive thin film (TCF) has increased for applications such as liquid crystal displays, touch panels, and flexible displays. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. But, a bundle of CNTs has different electrical properties than their individual counterparts. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance on PET substrates is researched. Arc-discharge SWNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. Results, we show that 97 ${\Omega}$/> sheet resistance can be achieved with 81% transmittance at the wavelength of 550 nm. The changes in electrical and optical conductivity of SWNT film before and after ionic doping treatments were discussed.

  • PDF

Improved Electrical Properties of Graphene Transparent Conducting Films Via Gold Doping

  • Kim, Yoo-Seok;Song, Woo-Seok;Kim, Sung-Hwan;Jeon, Cheol-Ho;Lee, Seung-Youb;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.388-388
    • /
    • 2011
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. The physical properties of graphene depend directly on the thickness. These properties lead to the possibility of its application in high-performance transparent conducting films (TCFs). Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ~60 ${\Omega}/sq$ and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. Here, we report an ingenious strategy, irradiation of MeV electron beam (e-beam) at room temperature under ambient condition,for obtaining size-homogeneous gold nanoparticle decorated on graphene. The nano-particlization promoted by MeV e-beam irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping, and energy dispersive X-ray spectroscopy. These results clearly revealed that gold nanoparticle with 10~15 nm in mean size were decorated along the surface of the graphene after 1.0 MeV-e-beam irradiation. The fabrication high-performance TCF with optimized doping condition showed a sheet resistance of ~150 ${\Omega}/sq$ at 94% transmittance. A chemical transformation and charge transfer for the metal gold nanoparticle were systematically explored by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

A machine learning-based model for the estimation of the critical thermo-electrical responses of the sandwich structure with magneto-electro-elastic face sheet

  • Zhou, Xiao;Wang, Pinyi;Al-Dhaifallah, Mujahed;Rawa, Muhyaddin;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.81-99
    • /
    • 2022
  • The aim of current work is to evaluate thermo-electrical characteristics of graphene nanoplatelets Reinforced Composite (GNPRC) coupled with magneto-electro-elastic (MEE) face sheet. In this regard, a cylindrical smart nanocomposite made of GNPRC with an external MEE layer is considered. The bonding between the layers are assumed to be perfect. Because of the layer nature of the structure, the material characteristics of the whole structure is regarded as graded. Both mechanical and thermal boundary conditions are applied to this structure. The main objective of this work is to determine critical temperature and critical voltage as a function of thermal condition, support type, GNP weight fraction, and MEE thickness. The governing equation of the multilayer nanocomposites cylindrical shell is derived. The generalized differential quadrature method (GDQM) is employed to numerically solve the differential equations. This method is integrated with Deep Learning Network (DNN) with ADADELTA optimizer to determine the critical conditions of the current sandwich structure. This the first time that effects of several conditions including surrounding temperature, MEE layer thickness, and pattern of the layers of the GNPRC is investigated on two main parameters critical temperature and critical voltage of the nanostructure. Furthermore, Maxwell equation is derived for modeling of the MEE. The outcome reveals that MEE layer, temperature change, GNP weight function, and GNP distribution patterns GNP weight function have significant influence on the critical temperature and voltage of cylindrical shell made from GNP nanocomposites core with MEE face sheet on outer of the shell.

Study on the Eco-friend Frame Sheet with Improved Glasses Temple's Insertion-processibility by Blending Plasticizer of High Specific Heat (친환경 안경테 판재의 심입 가공성 향상을 위한 고비열 가소제 혼입에 관한 연구)

  • Seo, Young Min;Lee, Hae Sung;Lee, Sung Jun;Jung, Sang Won;Kim, Hyun-Chul;Kim, Eun Joo;Go, Young Jun;Choi, Jin Hyun;Lee, Se Guen
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • Purpose: To improve glasses temple's insert processibility of CA/PEG blend, triacetin with higher specific heat values in the processing temperature range is used as second plasticizer. Methods: The total amount of plasticizer is fixed at 30 wt% by CA. To determine optimal CA/PEG/triacetin blend for glasses frame, blends with different composition ratio were examined by various analysis: thermal properties, mechanical properties, glossiness. Results: Specific heat of the CA/PEG blend increased as the content of triacetin. In CA/PEG/triacetin blends, as triacetin concentration is increased, glass transition temperature is decreased and heat conservation rate of composites is increased. Furthermore, CA/PEG/triacetin blend exhibited higher mechanical properties and similar gloss characterization with CA/PEG blend. Conclusions: It is possible to improve the processibility inserting metal support to CA temple through varying the weight ratio of PEG/triacetin. The extruded sheets of CA/PEG/triacetin blend had better glossiness and mechanical properties than those of CA/PEG blend.

70nm NMOSFET Fabrication with Ultra-shallow $n^{+}-{p}$ Junctions Using Low Energy $As_{2}^{+}$ Implantations (낮은 에너지의 $As_{2}^{+}$ 이온 주입을 이용한 얕은 $n^{+}-{p}$ 접합을 가진 70nm NMOSFET의 제작)

  • Choe, Byeong-Yong;Seong, Seok-Gang;Lee, Jong-Deok;Park, Byeong-Guk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.2
    • /
    • pp.95-102
    • /
    • 2001
  • Nano-scale gate length MOSFET devices require extremely shallow source/drain eftension region with junction depth of 20∼30nm. In this work, 20nm $n^{+}$-p junctions that are realized by using this $As_{2}^{+}$ low energy ($\leq$10keV) implantation show the lower sheet resistance of the $1.0k\Omega$/$\square$ after rapid thermal annealing process. The $As_{2}^{+}$ implantation and RTA process make it possible to fabricate the nano-scale NMOSFET of gate length of 70nm. $As_{2}^{+}$ 5 keV NMOSFET shows a small threshold voltage roll-off of 60mV and a DIBL effect of 87.2mV at 100nm gate length devices. The electrical characteristics of the fabricated devices with the heavily doped and abrupt $n^{+}$-p junctions ($N_{D}$$10^{20}$$cm^{-3}$, $X_{j}$$\leq$20nm) suggest the feasibility of the nano-scale NMOSFET device fabrication using the $As_{2}^{+}$ low energy ion implantation.

  • PDF

Flexible CdS Films for Selective control of Transmission of Electromagnetic Wave (유연성 기판위에 스퍼터링법으로 제조한 CdS 박막의 전자파차폐 특성평가)

  • Hur, Sung-Gi;Cho, Hyun-Jin;Jung, Hyun-Jun;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.27-27
    • /
    • 2009
  • Non-stochiometric CdS:H films grown on polyethersulfon (PES) flexible polymer substrates at room temperature by R.F. sputtering technique. They exhibited a dark- and photo-sheet resistance of $2.7\times10^5$ and $\sim\;50\;{\Omega}$/square, respectively. These values were realized by an optimum control of both hydrogen doping-levels and the surface morphologies of the films. The comparison between the real and the simulated results for the shielding and the transmission by the free space measurement system in the X-band frequency range (8.2 - 12.4 GHz) was also addressed in this study. Samples overlapped with 13 layers of CdS:H/PES were consistent with the transmission results of pure aluminum metal films ($0.1\;{\Omega}$/square) deposited on PES substrates. As a result, by the simples tacking of the CdS:H/PES layers, the perfect control of the shielding and the transmission of the EM wave in the range of X-band frequency is possible by avisible light alone, and their results are especially very outstanding findings in the stealth function of the radome(Radar+Dome) such as aircrafts, ships, and missiles.

  • PDF

A study on the design and cooling of the heat sink with hybrid structure of conductive polymer composite and metal (열전도성 고분자 복합소재/금속 소재 하이브리드 구조의 방열기구 설계 및 방열특성에 관한 연구)

  • Yoo, Yeong-Eun;Kim, Duck Jong;Yoon, Jae Sung;Park, Si-Hwan
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.14-19
    • /
    • 2016
  • Thermally or electrically conductive filler reinforced polymer composites are extensively being developed as the demand for light weight material increases rapidly in industiral applications need good conductivity such as heat sink of the electronics or light. Carbon or ceramic materials like graphite, carbon nanotube or boron nitride are typical conductive fillers with good thermal or electical conductivity. Using these conductive fillers, the polymer composites in the market show wide range of thermal conductivity from approximately 1 W/mK to 20 W/mK, which is quite enhanced considering the thermal conductivity lower than 0.5 W/mK for most polymeric materials. The practical use of these composites, however, is yet limited to specific applications because most composites are still not conductive enough or too difficult to process, too brittle, too expensive for higher conductivity. For practical use of conductive composite, the thermal conductivity required depending on the heat releasing mode are studied first for simplified unit cooling geometry to propose thermal conductivities of the composites for reasonable cooling performance comparing with the metal heat sink as a reference. Also, as a practical design for heat sink based on polymer composite, composite and metal sheet hybrid structures are investigated for LED lamp heat sink and audio amplication module housing to find that this hybrid structure can be a good solution considering all of the cooling performance, manufacturing, mechanical performance, cost and weight.

Brush-painted Ti-doped In2O3 Transparent Conducting Electrodes Using Nano-particle Solution for Printable Organic Solar Cells

  • Jeong, Jin-A;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.458.2-458.2
    • /
    • 2014
  • We have demonstrated that simple brush-painted Ti-doped $In_2O_3$(TIO) films can be used as a cost effective transparent anodes for organic solar cells (OSCs). We examined the RTA effects on the electrical, optical, and structural properties of the brush painted TIO electrodes. By the direct brushing of TIO nanoparticle ink and rapid thermal annealing (RTA), we can simply obtain TIO electrodes with a low sheet resistance of 28.25 Ohm/square and a high optical transmittance of 85.48% under atmospheric ambient conditions. Furthermore, improvements in the connectivity of the TIO nano-particles in the top region during the RTA process play an important role in reducing the resistivity of the brush-painted TIO anode. In particular, the brush painted TIO films showed a much higher mobility ($33.4cm^2/V-s$) than that of previously reported solution-process transparent oxide films ($1{\sim}5cm^2/V-s$) due to the effects of the Ti dopant with higher Lewis acid strength (3.06) and the reduced contact resistance of TIO nanoparticles. The OSCs fabricated on the brush-painted TIO films exhibited cell-performance with an open circuit voltage (Voc) of 0.61 V, shot circuit current (Jsc) of $7.90mA/cm^2$, fill factor (FF) of 61%, and power conversion efficiency (PCE) of 2.94%. This indicates that brush-painted TIO film is a promising cost-effective transparent electrode for printing-based OSCs with its simple process and high performance.

  • PDF