• Title/Summary/Keyword: Nano particle

검색결과 1,171건 처리시간 0.029초

An Environmentally-friendly Precursor, Ferrous Acetate, in preparation for Monodisperse Iron Oxide Nanoparticles

  • Suh, Yong-Jae;Kil, Dae-Sup;Chung, Kang-Sup;Lee, Hyo-Sook;Shao, Huiping
    • Journal of Magnetics
    • /
    • 제13권3호
    • /
    • pp.106-109
    • /
    • 2008
  • Almost monodisperse iron oxide nanoparticles with an average particle size ranging from 5 to 43 nm were fabricated using an environmentally friendly starting material, ferrous acetate. The smallest particles were formed in the presence of a reductant, 1,2-dodecanediol, while the particle size increased with increasing concentration of dispersing agents. The dispersants consisted of various combinations of oleic acid, oleylamine, trioctylphosphine, and polyvinylpyrrolidone. The threshold temperature to form crystalline particles was found to be $240^{\circ}C$. The 43 nm nanoparticles exhibited a room temperature saturation magnetization and coercivity of 57 emu/g and 47 Oe, respectively.

Modeling the compressive strength of cement mortar nano-composites

  • Alavi, Reza;Mirzadeh, Hamed
    • Computers and Concrete
    • /
    • 제10권1호
    • /
    • pp.49-57
    • /
    • 2012
  • Nano-particle-reinforced cement mortars have been the basis of research in recent years and a significant growth is expected in the future. Therefore, optimization and quantification of the effect of processing parameters and mixture ingredients on the performance of cement mortars are quite important. In this work, the effects of nano-silica, water/binder ratio, sand/binder ratio and aging (curing) time on the compressive strength of cement mortars were modeled by means of artificial neural network (ANN). The developed model can be conveniently used as a rough estimate at the stage of mix design in order to produce high quality and economical cement mortars.

나노 다공성 입자의 콜로이드 서스펜션을 이용한 기계적 감쇠기구에 대한 연구 (Study on Mechanism of Mechanical Damping System Based on The Colloidal Suspension of Nano-Porous Particles)

  • W.J, Song;Kim, J.;B.Y. Moon;B.S. Kang
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.359-362
    • /
    • 2003
  • Damping systems have been widely used to various industrial structures and are mainly hydraulic and pneumatic devices nowadays. In this work, a novel damping system based on the colloidal suspension in the field of nanotechnology is investigated. The colloidal suspension consists of Iyophobic working fluid and hydrophobic-coated porous particle. The mechanism of mechanical energy dissipation in damping system based on the colloidal suspension with nano-porous particles is different from that of the existing hydraulic damping system. The absorbed energy of the damping system using colloidal suspension can be calculated through the mechanical equilibrium condition by the superficial tensions of liquid-gas Interface in the hydrophobic surface in nano-porous particles. The results from an analytic approach have a reasonable agreement with experimental results.

  • PDF

Effect of Nozzle Tip Size on the Fabrication of Nano-Sized Nickel Oxide Powder by Spray Pyrolysis Process

  • Kim, Donghee;Yu, Jaekeun
    • 한국재료학회지
    • /
    • 제23권9호
    • /
    • pp.489-494
    • /
    • 2013
  • In this study, by using nickel chloride solution as a raw material, a nano-sized nickel oxide powder with an average particle size below 50 nm was produced by spray pyrolysis reaction. A spray pyrolysis system was specially designed and built for this study. The influence of nozzle tip size on the properties of the produced powder was examined. When the nozzle tip size was 1 mm, the particle size distribution was more uniform than when other nozzle tip sizes were used and the average particle size of the powder was about 15 nm. When the nozzle tip size increases to 2 mm, the average particle size increases to roughly 20 nm, and the particle size distribution becomes more uneven. When the tip size increases to 3 mm, particles with an average size of 25 nm and equal to or less than 10 nm coexist and the particle size distribution becomes much more uneven. When the tip size increases to 5 mm, large particles with average size of 50 nm partially exist, mostly consisting of minute particles with average sizes in the range of 15~25 nm. When the tip size increases from 1 mm to 2 mm, the XRD peak intensities greatly increase while the specific surface area decreases. When the tip size increases to 3 mm, the XRD peak intensities decrease while the specific surface area increases. When the tip size increases to 5 mm, the XRD peak intensities increase again while the specific surface area decreases.

분무열분해 공정에 의한 주석산화물 나노분체 제조에 미치공기압력의 영향 (Effects of Air Pressure on the Fabrication of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process)

  • 유재근;김동희
    • 한국재료학회지
    • /
    • 제21권12호
    • /
    • pp.690-696
    • /
    • 2011
  • In this study, nano-sized tin oxide powder with an average particle size of below 50 nm is prepared by the spray pyrolysis process. The influence of air pressure on the properties of the generated powder is examined. Along with the rise of air pressure from $0.1kg/cm^2$ to $3kg/cm^2$, the average size of the droplet-shaped particles decreases, while the particle size distribution becomes more regular. When the air pressure increases from $0.1kg/cm^2$ to $1kg/cm^2$, the average size of the dropletshaped particles, which is around 30-50 nm, shows hardly any change. When the air pressure increases up to $3kg/cm^2$, the average size of the droplet-shaped particles decreases to 30 nm. For the independent generated particles, when the air pressure is at $0.1kg/cm^2$, the average particle size is approximately 100 nm; when the air pressure increases up to $0.5kg/m^2$, the average particle size becomes more than 100 nm, and the surface structure becomes more compact; when the air pressure increases up to $1kg/cm^2$, the surface structure is almost the same as in the case of $0.5kg/cm^2$, and the average particle size is around 80- 100 nm; when the air pressure increases up to $3kg/cm^2$, the surface structure becomes incompact compared to the cases of other air pressures, and the average particle size is around 80-100 nm. Along with the rise of air pressure from $0.1kg/cm^2$ to $0.5kg/cm^2$, the XRD peak intensity slightly decreases, and the specific surface area increases. When the air pressure increases up to $1kg/cm^2$ and $3kg/cm^2$, the XRD peak intensity increases, while the specific surface area also increases.

The Multi-Frequency NMR Relaxation and EPR Study of Nano-sized Iron Oxide

  • 황문정;이영주;이일수;장용민
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2002년도 제7차 학술대회 초록집
    • /
    • pp.129-129
    • /
    • 2002
  • 목적: 초상자성 nano 산화철 입자의 특성을 연구하기 위하여, 여러 다른 자기장 세기에서의 NMR 자기공이완시간(T1/T2)을 측정하고, 초상자성 nano-particle 조영제의 기전에 관한 모델로부터 얻어 진 계산식과 비교해보며, 다양한 온도에서의 EPR spectrum을 이용하여 이들의 전자적 성질을 비교해 보고자 하였다.

  • PDF

Effect of Silica Particle Size on the Mechanical Properties in an Epoxy/Silica Composite for HV Insulation

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권5호
    • /
    • pp.248-251
    • /
    • 2012
  • In order to develop a high voltage insulation material, epoxy/micro-silica composites (EMC) and epoxy/micro-silica/nano-silica composites (EMNC) with three different particle sizes in ${\mu}m$ and one particle size in nm were prepared and their tensile and flexural tests were carried out and the data was estimated by Weibull statistical analysis. The tensile strength of the neat epoxy was 82.8 MPa and those of the EMCs were larger than that of the neat epoxy, and they were much more advanced by the addition of 10 nm sized nano-silica to the EMCs. Flexural strength showed the same tendency of the tensile strength. As the micro-particle size decreased, tensile and flexural strength increased.

입자 측정방법을 통한 초기 수트입자 연구 (Study of Incipient Soot Particles with Measuring Methodologies)

  • 이의주
    • 한국가시화정보학회지
    • /
    • 제2권1호
    • /
    • pp.12-17
    • /
    • 2004
  • The physical characteristics of soot near the soot inception point were investigated with various measurements. In-situ measurements of particle size and volume fraction were introduced based on time resolved laser-induced incandescence (TIRE-LII) and laser-induced ion mobility (LIIM). The one has more convenience and accuracy than conventional LII technique and the other works best for particle sizes of a few nanometers at high concentrations in a uniform concentration field. A complementary ex-situ measurement of particle size is nano differential mobility analyzer (Nano-DMA), which recently developed for measuring particle sizes between 2nm and 100nm and provides high-resolution size information for early soot. Particles will be also collected on transmission electron microscope (TEM) grids using rapid thermophoretic sampling and analyzed for morphology. These measurements will allow fresh and original insight into the characterizing soot inception process. The measured physical properties of incipient soot will clarify the controlling growth mechanism combined with chemical ones, and the dominant mechanism for soot modeling can be deduced from the information.

  • PDF