• Title/Summary/Keyword: Nano machining

Search Result 189, Processing Time 0.031 seconds

A Study on Basic Research Trends of Ultra-Precision Machining Technology in Korea (우리나라 초정밀가공기술의 기초연구동향 분석 연구)

  • Park, Won-Kyoo;Lee, Dae-Myung;Hong, Won-Hwa
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.86-95
    • /
    • 2011
  • Ultra-precision machining technology is the essential core technology in today's micro-electronics and electro-optical industries. The needs for processing systems to manufacture products to nanometer(nm) accuracy and sub-nanometer resolutions are increased recently. By using ion beam, it is possible to fabricate ultra-precision and ultra-fine products with nm accuracy and sub-nm resolution. In this paper, the basic research trends of ultra precision machining technology in domestic are surveyed, and the ways to reach to the world-leading level of basic research capabilities in the field of ultra-precision machining technology in domestic is suggested.

Micro/Meso-scale Shapes Machining by Micro EDM Process

  • Kim Young-Tae;Park Sung-Jun;Lee Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.5-11
    • /
    • 2005
  • Among the micro machining techniques, micro EDM is generally used for machining micro holes, pockets, and micro structures on difficult-cut-materials. Micro EDM parameters such as applied voltage, capacitance, peak current, pulse width, duration time are very important to fabricate the tool electrode and produce the micro structures. Developed micro EDM machine is composed of a 3-axis driving system and RC circuit equipped with pulse generator. In this paper, using micro EDM machine, the characteristics of micro EDM process are investigated and it is applied to micro holes, slots, and pockets machining. Through experiments, relations between machined surface and voltages and between MRR and feedrate are investigated. Also the trends of tool wear are investigated in case of hole and slot machining.

A Study on the Control of a Linear Motor System of the Universal Machining Center (복합가공기용 리니어 모터 시스템의 제어 연구)

  • Kong Kyoung-Chul;Jeon Do-Young
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.94-99
    • /
    • 2005
  • Though the technology on the ultra-precise machining has been developed intensively, the high speed and high precision for large machining range is still very hard to achieve. The linear motor system fur the universal machining center is proper fur high speed and high precision, but it has drawback of sensitivity to disturbance. In this research, two degrees of freedom controller based on the zero phase error tracking controller (ZPETC) and disturbance observer are proposed to improve the tracking performance and dynamic stiffness of linear motor system. The proposed controller is verified in simulations and experiments on a nano-positioner system, and the experimental result shows that the tracking performance improved. In addition, the PID optimization method is proposed for the commercialized controller such as the PMAC based system. The tracking as well as impedance is included in the cost function of optimization.

  • PDF

A Study on the Precision Processing of Thin Stamper with Global Area (대면적 박판 스탬퍼 정밀 가공을 위한 연구)

  • 최두선;제태진;서승호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.632-635
    • /
    • 2003
  • As a process technology of nano pattern with a new conception for economic and practical technology of alternative nano process. process technologies such as Embossing, Imprinting. Molding and Inking are beginning to make its appearance. Among these alternative processes, nano mold process is a process that is of benefit to mass production and keeps excellency of reproduction and high quality of parts. In this study, we experienced micro precision machining technology of nano stamper for the injection mold of optical disk with big capacity. Especially, Flatness and uniformity are important for nano stamper with global area, for the purpose of developing polishing technology of micro precision of Back polishing only being used for nano stamper, we carried out a basic study to secure flatness standards

  • PDF

Ablation of Cr Thin Film on Glass Using Ultrashort Pulse Laser (극초단펄스 레이저에 의한 크롬박막 미세가공)

  • 김재구;신보성;장원석;최지연;장정원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.620-623
    • /
    • 2003
  • The material processing by using ultrashort pulse laser, in recently, is actively applying into the micro machining and nano-machining technology since ultrashort pulse has so faster than the time which the electrons energy absorbing photon energy is transmitted to surrounding lattice-phonon that it has many advantages in point of machining. The micro machining of metallic thin film on the plain glass is widely used in the fields such as mask repairing for semiconductor, fabrication of photonic crystal, MEMS devices and data storage devices. Therefore, it is important to secure the machining technology of the sub-micron size. In this research, we set up the machining system by using ultrashort pulse laser and conduct on the Cr 200nm thin film ablation experiments of spot and line with the variables such as energy, pulse number, speed, and so on. And we observed the characteristics of surrounding heat-affected zone and by-products appeared in critical energy density and higher energy density through SEM, and also examined the machining features between in He gas atmosphere which make pulse change minimized by nonlinear effect and in the air. Finally, the pit size of 0.8${\mu}{\textrm}{m}$ diameter and the line width of 1${\mu}{\textrm}{m}$ could be obtained.

  • PDF

Ultra-precision Grinding Machining of Glass Rod Lens Core With Aspheric (비구면 Glass Rod 렌즈 금형의 초정밀 연삭가공)

  • Kim, Woo-Soon;Kim, Dong-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.76-82
    • /
    • 2009
  • To obtain the surface roughness with nano order, we need a ultra-precision machine, cutting condition, and materials. In this paper, the cutting condition for getting nano order smooth surface of core have been examined experimentally by the ultra-precision machine and diamond wheels. The effects of the cutting velocity, the feed rate and depth of cut on the surface roughness were studied. And also, the surface roughness was measured by the Form Talysurf series PGI 840. The champion data of developed core was surface roughness Rmax 24.6nm, figure accuracy Rmax 68.9nm.

Localized Electro-chemical Micro Machining Using Ultra Short Pulses (초단펄스 전해 국부화를 이용한 미세 가공)

  • Ahn, Se-Hyun;Choi, Se-Hwan;Ryu, Shi-Hyoung;Cho, Deok-Ki;Chu, Chong-Nam
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1052-1058
    • /
    • 2003
  • The possibility of micro/nano machining through electro-chemical process is discussed in this research. Electro-chemical dissolution region is localized within 1 ${\mu}m$ by applying ultra short pulses with tens of nanosecond duration. The effects of voltage, pulse duration, and pulse frequency on the localization distance are investigated. Localization distance can be manipulated by controlling the voltage and pulse duration, and various hole shapes are produced including stepped holes and taper free hole. High quality micro-hole with 8 ${\mu}m$ diameter with 20 ${\mu}m$ depth and micro-groove with 9 ${\mu}m$ width with 10 ${\mu}m$ depth are machined on 304 stainless steel.

  • PDF

A New Approach to Reduce Geometric Error in FIB Fabrication of Micro Structures (집속이온빔을 이용한 미세구조물 가공의 형상정밀도 향상)

  • Kim K.S.;Jung J.W.;Min B.K.;Lee S.J.;Park C.W.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1186-1189
    • /
    • 2005
  • Focused Ion Beam machining is an attractive approach to produce nano-scale 3D structures. However, like other beam-based manufacturing processes, the redeposition of the sputtered material during the machining deteriorates the geometric accuracy of ion beam machining. In this research a new approach to reduce the geometric error in FIB machining is introduced. The observed redeposition phenomena have been compared with existing theoretical model. Although the redeposition effect has good repeatability the prediction of exact amount of geometric error in ion beam machining is difficult. Therefore, proposed method utilizes process control approach. Developed algorithm measures the redeposition amount after every production cycle and modifies next process plan. The method has been implemented to a real FIB machine and the experimental results demonstrated considerable improvement of five micrometer-sized pocket machining.

  • PDF