• Title/Summary/Keyword: Nano Stage

Search Result 280, Processing Time 0.028 seconds

Life Cycle Impacts of Flexible-fiber Deep-bed Filter Compared to Sand-Filter including Coagulation and Sedimentation in Water Treatment Plant

  • Uh, Soo-Gap;Kim, Ji-Won;Han, Ki-Back;Kim, Chang-Won
    • Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Recently a new technology called the flexible-fiber deep-bed filter (FDF) claimed to replace the conventional sand filter including coagulation and sedimentation filter (CSF) processes in the water treatment plant. Therefore the life cycle assessment (LCA) approach was applied for evaluating the life cycle impacts of FDF compared with those of CSF. The used LCA softwares were the Simapro 6 and PASS and their life cycle impact assessment (LCIA) methodologies were the Eco-indicator 99 and the Korean Eco-indicator, respectively. The goal of this LCA was to identify environmental loads of CSF and FDF from raw material to disposal stages. The scopes of the systems have been determined based on the experiences of existing CSF and FDF. The function was to remove suspended solids by filtration and the functional unit was $1\;m^3$/day. Both systems showed that most environmental impacts were occurred during the operation stage. To reduce the environmental impacts the coagulants and electricity consumptions need to be cut down. If the CSF was replaced with the FDF, the environmental impacts would be reduced in most of the impact categories. The LCA results of Korean Eco-indicator and Eco- indicator99 were quite different from each other due to the indwelling differences such as category indicators, impact categories, characterization factors, normalization values and weighting factors. This study showed that the life cycle assessment could be a valuable tool for evaluating the environmental impact of the new technology which was introduced in water treatment process.

Nanoparticle Inducing Device for Effective Drug Delivery System (효과적인 약물전달 시스템을 위한 나노입자 유도 장치)

  • Lee, Chongmyeong;Han, Hyeonho;Jang, Byonghan;Oh, Eunseol;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.102-110
    • /
    • 2017
  • Cancer is one of the most challenging human diseases. Current clinical methods have limitations for early-stage cancer diagnosis and effective therapy. Moreover, current surgical methods to remove tumors are not precise enough and chemotherapy destroys normal tissues as well as malignant tumors, resulting in severe side effects such as hair loss, vomiting, diarrhea, and blood disorders. Recently, nanotechnology using nano-sized particles suggests advanced solutions to overcome the limitations. Various nanoparticles have been reported for more accurate diagnosis and minimized side effects. However, current nanoparticles still show limited targeting accuracy for cancer generally below 5% injection dosage. Therefore, herein we report a new nanoparticle inducing device(NID) to guide the nanoparticles externally by using both variable magnetic fields and blood flows. NID can be a promising approach to improve targeting accuracy for drug delivery using iron oxide nanoparticles.

Morphology, Transparency, and Thermal Resistance of SAN Nanocomposites Containing Organically Modified Layered Double Hydroxides (유기변성 LDH를 사용한 SAN 나노컴포지트의 형태학, 투명성 및 내열성)

  • Kim, Seog-Jun
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.287-294
    • /
    • 2012
  • ZnAl-LDH(layered double hydroxide) (Zn:Al=2:1 mole ratio) modified with stearic acid (SA) or oleic acid (OA) was synthesized by a coprecipitation method and compounded to SAN polymer at various contents. All the SAN composites were manufactured by a co-rotating twin-screw extruder and subsequently injection molded into several specimen. Morphology, transparency, and thermal resistance of these composites were evaluated by TEM, XRD(X-ray diffractometry), UV-Vis spectrophotometry, and thermogravimetric analysis. SAN nanocomposites containing OA-$Zn_2Al$ LDH showed better optical transmittance than SAN nanocomposites containing SA-$Zn_2Al$ LDH. All the SAN nanocomposites containing OA-$Zn_2Al$ LDH or SA-$Zn_2Al$ LDH exhibited improvement of thermal resistance at second stage of thermal oxidation. These results were explained by the fact that the interaction between organic modifier and polymer performed an important role in the property improvement of polymer nanocomposites.

Montecarlo Simulation of the thermal neutron reflectometer with horizontal sample geometry for surface characterization of nanostructured thin films (나노 박막의 표면분석을 위한 열중성자 기반 수평형 반사율 장치의 몬테카를로 시뮬레이션)

  • Lee Chong Oh;Shin Kwanwoo;Lee Jeong Soo;Cho Sang Jin;Lee Chang Hee;So Ji Yong
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.119-125
    • /
    • 2005
  • The horizontal reflectometer, which uses a neutron beam in the reactor, provides scientists a set of unique tools offering destruction-free investigation of biological membranes in the native-like environments in nano-meter scale. As an intial stage for the development of the first Korean neutron reflectometer with a horizontal sample geometry, we performed the instrumental simulation using MCSTAS, Monte Carlo Simulations of Triple Axis Spectrometers for neutron ray-tracing simulation. The results indicated that modeling of the overall instrument geometry based on the thermal neutron source with a wavelength of 2.55 $2.5{\AA}$ at HANARO was successfully performed, and further the optimization of the individual components of the instrument, including the collimator, monochromators, filter and supermirror has been made.

Transition of Japanese Kimono Design (일본 기모노 의장(意匠)의 변천)

  • Lee, Kyung-Hee
    • Fashion & Textile Research Journal
    • /
    • v.13 no.1
    • /
    • pp.32-43
    • /
    • 2011
  • This study investigate the transition about Japanese national costume kimono. The prototype of the present kimono is a kosode. The origin of kosode dates back to the mid-Heian period, when this type of kimono served as the everyday wear of commoners and an undergarment for court nobles, both men and women. In the Muromachi period, particularly after the Onin war, the kosode began to be by people of all classes. In the Muromachi period, kosode consisted mainly of woven textiles. In the Momoyama period, kosode became very elaborate, employing such various techniques as tie-dyeing, embroidery, metallic leaf(surihaku) and free-hand painting. These were further combined resulting in such techniques as tsujigahana dyeing and nuihaku, which are now considered to epitomize Momoyama-period textile design. A category of kosode of the early Edo period, known as Keicho kosode, is fashioned mainly from black, white, or red figured satin(rinzu), or from figured satin segmented in these three colors. Books of kosode designs began to be published in the Kambun era, when the merchant class was becoming economically powerful, kosode began to reflect its taste. During its final stage of development in the late 17th and early 18th centuries, yuzen dyeing achieved wide acceptance. From the late 18th century toward the early 19th century, kosode worn by the merchant class underwent drastic changes, while those worn by the samurai class changed little. In the after the late 18th century, clear differences in design and decorative methods appeared between the kosode worn by rich merchants and those worn by middle and lower class merchants.

Electrical Property of Immobilized SWNTs Bundle as Bridge between Electrodes in Nanobiosensor Depending on Solvent Characteristics (시료용액의 특성에 따른 고정화된 단일벽 탄소나노튜브의 전기적 거동)

  • Lee, Jinyoung;Cho, Jaehoon;Park, Chulhwan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.115-120
    • /
    • 2017
  • In recent, it is worldwide issued that nanoscale science and technology as a solution have supported to increase the sensing performance in carbon nanotube based biosensor system. Containing material chemistry in various nanostructures has formed their high potentials for stabilizing and activating biocatalyst as a bioreceptor for medical, food contaminants, and environmental detections using electrode modification technologies. Especially, the large surface area provides the attachment of biocatalysts increasing the biocatalyst loading. Therefore, nano-scale engineering of the biocatalysts have been suggested to be the next stage advancement of biosensors. Here, we would like to study the electrical mechanism depending on the exposure methods (soaking or dropping) to the sample solution to the assembled carbon nanotubes (CNTs) on the gold electrodes of biosensor for a simple and highly sensitive detection. We performed various experiments using polar and non-polar solutions as sampling tests and identified electrical response of assembled CNTs in those solutions.

Microscopic characterization of pretransition oxide formed on Zr-Nb-Sn alloy under various Zn and dissolved hydrogen concentrations

  • Kim, Sungyu;Kim, Taeho;Kim, Ji Hyun;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.416-424
    • /
    • 2018
  • Microstructure of oxide formed on Zr-Nb-Sn tube sample was intensively examined by scanning transmission electron microscopy after exposure to simulated primary water chemistry conditions of various concentrations of Zn (0 or 30 ppb) and dissolved hydrogen ($H_2$) (30 or 50 cc/kg) for various durations without applying desirable heat flux. Microstructural analysis indicated that there was no noticeable change in the microstructure of the oxide corresponding to water chemistry changes within the test duration of 100 days (pretransition stage) and no significant difference in the overall thickness of the oxide layer. Equiaxed grains with nano-size pores along the grain boundaries and microcracks were dominant near the water/oxide interface, regardless of water chemistry conditions. As the metal/oxide interface was approached, the number of pores tended to decrease. However, there was no significant effect of $H_2$ concentration between 30 cc/kg and 50 cc/kg on the corrosion of the oxide after free immersion in water at $360^{\circ}C$. The adsorption of Zn on the cladding surface was observed by X-ray photoelectron spectroscopy and detected as ZnO on the outer oxide surface. From the perspective of $OH^-$ ion diffusion and porosity formation, the absence of noticeable effects was discussed further.

A Study on the Color Image of Environment Shape Objects in University -Focusing on the Case of Kongju University- (대학 내 공공 환경조형물 색채 감성이미지 분석 연구 -공주대학교 사례를 중심으로-)

  • Kim, Hye-Jin;Chung, Ji-Bok;Choi, Jung-In
    • Journal of Digital Convergence
    • /
    • v.17 no.6
    • /
    • pp.349-354
    • /
    • 2019
  • The purpose of this study is to measure and analyze color image scale when viewing the public objects installed in Kongju National University and the installation environment, and preferred colors and color image scale in the color planning. The research was conducted with the analysis of the sculpture installed in the school and the questionnaire for the students. As a result of the study, suggestions were made for points to be considered for user's perception of environmental sculptures in the school and when constructing the sculpture. This study approaches the color of the public environment sculpture installed in the school academically, and proposes factors to be considered in the color planning stage in the future. Therefore, it is expected that this study will provide appropriate guidelines for the installation and planning of the sculpture in the school.

Effect of Pretreatment of Biogenic Titanium Dioxide on Photocatalytic Transformation of Chloroform (Biogenic TiO2 나노입자 전처리가 클로로포름 광분해에 미치는 영향)

  • Kwon, Sooyoul;Rorrer, Greg;Semprini, Lewis;Kim, Young
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.98-103
    • /
    • 2011
  • Photocatalysis using UV light and catalysts is an attractive low temperature and non-energy- intensive method for remediation of a wide range of chemical contaminants like chloroform (CF). Recently development of environmental friendly and sustainable catalytic systems is needed before such catalysts can be routinely applied to large-scale remediation or drinking water treatment. Titanium dioxide is a candidate material, since it is stable, highly reactive, and inexpensive. Diatoms are photosynthetic, single-celled algae that make a microscale silica shell with nano scale features. These diatoms have an ability to biologically fabricate $TiO_2$ nanoparticles into this shell in a process that parallels nanoscale silica mineralization. We cultivated diatoms, metabolically deposited titanium into the shell by using a two-stage photobioreactor and used this biogenic $TiO_2$ to this study. In this study we evaluated how effectively biogenic $TiO_2$ nanoparticles transform CF compared with chemically-synthesized $TiO_2$ nanoparticlesthe and effect of pretreatment of diatom-produced $TiO_2$ nanoparticles on photocatalytic transformation of CF. The rate of CF transformation by diatom-$TiO_2$ particles is a factor of 3 slower than chemically-synthesized one and chloride ion production was also co-related with CF transformation, and 79~91% of CF mineralization was observed in two $TiO_2$ particles. And the period of sonication and mass transfer due to particle size, evaluated by difference of oxygen tention does not affect on the CF transformation. Based on the XRD analysis we conclude that slower CF transformation by diatom-$TiO_2$ might be due to incomplete annealing to the anatase form.

Nanotechnology in early diagnosis of gastro intestinal cancer surgery through CNN and ANN-extreme gradient boosting

  • Y. Wenjing;T. Yuhan;Y. Zhiang;T. Shanhui;L. Shijun;M. Sharaf
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.451-466
    • /
    • 2023
  • Gastrointestinal cancer (GC) is a prevalent malignant tumor of the digestive system that poses a severe health risk to humans. Due to the specific organ structure of the gastrointestinal system, both endoscopic and MRI diagnoses of GIC have limited sensitivity. The primary factors influencing curative efficacy in GIC patients are drug inefficacy and high recurrence rates in surgical and pharmacological therapy. Due to its unique optical features, good biocompatibility, surface effects, and small size effects, nanotechnology is a developing and advanced area of study for the detection and treatment of cancer. Because of its deep location and complex surgery, diagnosing and treating gastrointestinal cancer is very difficult. The early diagnosis and urgent treatment of gastrointestinal illness are enabled by nanotechnology. As diagnostic and therapeutic tools, nanoparticles directly target tumor cells, allowing their detection and removal. XGBoost was used as a classification method known for achieving numerous winning solutions in data analysis competitions, to capture nonlinear relations among many input variables and outcomes using the boosting approach to machine learning. The research sample included 300 GC patients, comprising 190 males (72.2% of the sample) and 110 women (27.8%). Using convolutional neural networks (CNN) and artificial neural networks (ANN)-EXtreme Gradient Boosting (XGBoost), the patients mean± SD age was 50.42 ± 13.06. High-risk behaviors (P = 0.070), age at diagnosis (P = 0.037), distant metastasis (P = 0.004), and tumor stage (P = 0.015) were shown to have a statistically significant link with GC patient survival. AUC was 0.92, sensitivity was 81.5%, specificity was 90.5%, and accuracy was 84.7 when analyzing stomach picture.