• 제목/요약/키워드: Nano Silica

검색결과 415건 처리시간 0.025초

물유리를 이용한 나노실리카 제조 시 pH가 미치는 영향 (The Effect of pH on Synthesis of Nano-Silica Using Water Glass)

  • 최진석;안성진
    • 한국재료학회지
    • /
    • 제25권4호
    • /
    • pp.209-213
    • /
    • 2015
  • Synthesis of nano-silica using water glass in a Sol-Gel process is one of several methods to manufacture nano-silica. In nano-silica synthesized from water glass, there are various metal impurities. However, synthesis of nano-silica using water glass in a Sol-Gel process is an interesting method because it is relatively simple and cheap. In this study, nano-silica was synthesized from water glass; we investigated the effect of pH on the synthesis of nano-silica. The morphology of the nanosilica with pH 2 was flat, but the surface of the nano-silica with pH 10 had holes similar to small craters. As a result of ICP-OES analysis, the amount of Na in the nano-silica with pH 2 was found to be 170 mg/kg. On the other hand, the amount of Na in the nano-silica with pH 10 was found to be 56,930 mg/kg. After calcination, the crystal structure of the nano-silica with pH 2 was amorphous. The crystal structure of the nano-silica with pH 10 transformed from amorphous to tridymite. This is because elemental Na in the nano-silica had the effect of decreasing the phase transformation temperature.

시멘트의 수화특성에 대한 유·무기 복합 나노실리카의 영향 (Influence of Nano Silica Dispersant on Hydration Properties of Cementitious Materials)

  • 강현주;송명신;박종헌;송수재
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.510-515
    • /
    • 2011
  • In this study, as a material used to replace silica fumes for high strength concrete, nano-silica compound with organic functional group for dispersion and with inorganic silica group that can cause a pozzolan reaction is synthesized, These nano silica compound is divided into IC, which is nano size $SiO_2$ with irregularly combined hydroxyl group and carboxyl group, and RC, which is nano size $SiO_2$ with regularly combined hydroxyl group and carboxyl group. The effects of these nano silica compound on the hydration of cement are reviewed. As a result, all of synthesized nano-silica compounds have excellent dispersion on the cement flow, we think that dispersion property is the effect of air entraining by synthesized nano-silica compounds. The result of the microstructure observation showed that the particle size of the synthesized nano-silica is smaller than silica fume and spread evenly among the cement particles. In initial The phenomenon of strength decreasing occurred due to delayed hydration reaction by the synthesized nano-silica with carboxyl(-COOH) and hydroxyl(-OH) functional group.

나노실리카 충진함량 변화에 따른 EMNC의 특성연구 (1) -열적특성 중심으로- (Properties of EMNC according to Addition Contents Variation for Nanosilica (1) -For Thermal Properties)

  • 최운식;박재준
    • 한국전기전자재료학회논문지
    • /
    • 제25권10호
    • /
    • pp.798-804
    • /
    • 2012
  • This paper focuses on thermal properties of a newly prepared composite material by nano-silica and micro-silica mixture. Nano-silica and micro-silica mixture composites were made by dispersing surface treated nano-silica(average radius: 10 nm) and micro-size silica in epoxy resin. To investigate the effects of nano-silica and micro-size silica mixture(ENMC), the glass transition temperature (Tg), coefficients of thermal expansion(CTE) and elastic modulus of DMA properties by DSC, TMA and DMA devices were measured for the ENMC according to increase nano-silica addition contents and EMC. All properties of the neat epoxy were improved by the addition of micro-silica, which was improved much further by the addition of surface treated nano-silica to the EMC system.

The crack propagation of fiber-reinforced self-compacting concrete containing micro-silica and nano-silica

  • Moosa Mazloom;Amirhosein Abna;Hossein Karimpour;Mohammad Akbari-Jamkarani
    • Advances in nano research
    • /
    • 제15권6호
    • /
    • pp.495-511
    • /
    • 2023
  • In this research, the impact of micro-silica, nano-silica, and polypropylene fibers on the fracture energy of self-compacting concrete was thoroughly examined. Enhancing the fracture energy is very important to increase the crack propagation resistance. The study focused on evaluating the self-compacting properties of the concrete through various tests, including J-ring, V-funnel, slump flow, and T50 tests. Additionally, the mechanical properties of the concrete, such as compressive and tensile strengths, modulus of elasticity, and fracture parameters were investigated on hardened specimens after 28 days. The results demonstrated that the incorporation of micro-silica and nano-silica not only decreased the rheological aspects of self-compacting concrete but also significantly enhanced its mechanical properties, particularly the compressive strength. On the other hand, the inclusion of polypropylene fibers had a positive impact on fracture parameters, tensile strength, and flexural strength of the specimens. Utilizing the response surface method, the relationship between micro-silica, nano-silica, and fibers was established. The optimal combination for achieving the highest compressive strength was found to be 5% micro-silica, 0.75% nano-silica, and 0.1% fibers. Furthermore, for obtaining the best mixture with superior tensile strength, flexural strength, modulus of elasticity, and fracture energy, the ideal proportion was determined as 5% micro-silica, 0.75% nano-silica, and 0.15% fibers. Compared to the control mixture, the aforementioned parameters showed significant improvements of 26.3%, 30.3%, 34.3%, and 34.3%, respectively. In order to accurately model the tensile cracking of concrete, the authors used softening curves derived from an inverse algorithm proposed by them. This method allowed for a precise and detailed analysis of the concrete under tensile stress. This study explores the effects of micro-silica, nano-silica, and polypropylene fibers on self-compacting concrete and shows their influences on the fracture energy and various mechanical properties of the concrete. The results offer valuable insights for optimizing the concrete mix to achieve desired strength and performance characteristics.

Mechanical properties and durability of self consolidating cementitious materials incorporating nano silica and silica fume

  • Mahdikhani, Mahdi;Ramezanianpour, Ali Akbar
    • Computers and Concrete
    • /
    • 제14권2호
    • /
    • pp.175-191
    • /
    • 2014
  • In recent years, the emergence of nanotechnology and nanomaterial has created hopes to improve various properties of concrete. Nano silica as one of these materials has been introduced as a cement replacement material for concrete mixture in construction applications. It can modify the properties of concrete, due to high pozzolanic reactions and also making a denser microstructure. On the other hand, it is well recognized that the use of mineral admixtures such as silica fume affects the mechanical properties and durability of cementitious materials. In addition, the superior performance of self-consolidating concrete (SCC) and self-consolidating mortars (SCM) over conventional concrete is generally related to their ingredients. This study investigates the effect of nano silica and silica fume on the compressive strength and chloride permeability of self-consolidating mortars. Tests include compressive strength, rapid chloride permeability test, water permeability, capillary water absorption, and surface electrical resistance, which carried out on twenty mortar mixtures containing zero to 6 percent of nano silica and silica fume. Results show that SCMs incorporating nano silica had higher compressive strength at various ages. In addition, results show that nano silica has enhanced the durability SCMs and reduced the chloride permeability.

나노실리카와 나노칼사이트 혼입 석회석 소성 점토 시멘트(LC3) 페이스트의 기계적 성능 평가 (Assessment of the Mechanical Performance of Nano-Silica and Nano-Calcite Incorporated Limestone Calcined Clay Cement (LC3) Paste)

  • 김경률;조성민;배성철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.151-152
    • /
    • 2023
  • This study investigates the effect of nano-silica and nano-calcite on the hydration properties and mechanical performance of limestone calcined clay cement (LC3) paste. The pastes were synthesized by replacing limestone with nano-silica and nano-calcite in order to enhance the mechanical properties in both early and late stages of hydration. The nano-calcite enhanced the strength of LC3 pastes at 1 day of hydration, however, the strength decreased compared to the ordinary LC3 pastes afterwards due to excessive amount of carboaluminate produced in the pastes. On the other hand, nano-silica improved the mechanical properties of LC3 pastes at all ages of hydration. This is mainly due to the nucleation effect and pozzolanic reaction of nano-silica, affecting the early age and late ages of hydration, respectively. The nucleation effect of both nanomaterials were confirmed by the analysis of hydration heat, supporting the enhanced early age strength of nanomaterial incorporated LC3 pastes. Furthermore, the dense matrix was shown in the pore size distribution, and the increased C-S-H due to the pozzolanic reaction evidence the improved compressive and splitting tensile strength of nano-silica incorporated LC3 pastes.

  • PDF

Static and dynamic characteristics of silty sand treated with nano-silica and basalt fiber subjected to freeze-thaw cycles

  • Hamid Alizadeh Kakroudi;Meysam Bayat;Bahram Nadi
    • Geomechanics and Engineering
    • /
    • 제37권1호
    • /
    • pp.85-95
    • /
    • 2024
  • This study investigates the influence of nano-silica and basalt fiber content, curing duration, and freeze-thaw cycles on the static and dynamic properties of soil specimens. A comprehensive series of tests, including Unconfined Compressive Strength (UCS), static triaxial, and dynamic triaxial tests, were conducted. Additionally, scanning electron microscopy (SEM) analysis was employed to examine the microstructure of treated specimens. Results indicate that a combination of 1% fiber and 10% nano-silica yields optimal soil enhancement. The failure patterns of specimens varied significantly depending on the type of additive. Static triaxial tests revealed a notable reduction in the brittleness index (IB) with the inclusion of basalt fibers. Specimens containing 10% nano-silica and 1% fiber exhibited superior shear strength parameters and UCS. The highest cohesion and friction angle were obtained for treated specimens with 10% nano-silica and 1% fiber, 90 kPa and 37.8°, respectively. Furthermore, an increase in curing time led to a significant increase in UCS values for specimens containing nano-silica. Additionally, the addition of fiber resulted in a decrease in IB, while the addition of nano-silica led to an increase in IB. Increasing nano-silica content in stabilized specimens enhanced shear modulus while decreasing the damping ratio. Freeze-thaw cycles were found to decrease the cohesion of treated specimens based on the results of static triaxial tests. Specimens treated with 10% nano-silica and 1% fiber experienced a reduction in shear modulus and an increase in the damping ratio under freeze-thaw conditions. SEM analysis reveals dense microstructure in nano-silica stabilized specimens, enhanced adhesion of soil particles and fibers, and increased roughness on fiber surfaces.

Reliability based partial safety factor of concrete containing nano silica and silica fume

  • Nanda, Anil Kumar;Bansal, Prem Pal;Kumar, Maneek
    • Computers and Concrete
    • /
    • 제26권5호
    • /
    • pp.385-395
    • /
    • 2020
  • The influence of combination of nano silica and silica fume, as partial cement replacement materials, on the properties of concrete has been studied through the measurement of compressive strength. The compressive strength of concrete in terms of mean, standard deviation and with-in-test coefficient of variation related to the variation in the nominated parameters have also been developed. The compressive strength data developed experimentally has been analyzed using normal-probability distribution and partial safety factors of composite concretes have been evaluated by using first order second moment approach with Hasofer Lind's method. The use of Nano silica and silica fume in concrete decreases the partial safety factor of concrete i.e., increase the reliability of concrete. The experimental results show that the properties of concrete having nano silica and silica fume in combination were better than that of a plain concrete. The SEM test results showing the level of Ca(OH)2 in plain concrete and consumption level Ca(OH)2 of concrete containing nano silica & silica fume have also been presented.

Effect of steel fibres and nano silica on fracture properties of medium strength concrete

  • Murthy, A. Ramachandra;Ganesh, P.
    • Advances in concrete construction
    • /
    • 제7권3호
    • /
    • pp.143-150
    • /
    • 2019
  • This study presents the fracture properties of nano modified medium strength concrete (MSC). The nano particle used in this study is nano silica which replaces cement about 1 and 2% by weight, and the micro steel fibers are added about 0.4% volume of concrete. In addition to fracture properties, mechanical properties, namely, compressive strength, split tensile strength, and flexural strength of nano modified MSC are studied. To ensure the durability of the MSC, durability studies such as rapid chloride penetration test, sorptivity test, and water absorption test have been carried out for the nano modified MSC. From the study, it is observed that significant performance improvement in nano modified MSC in terms of strength and durability which could be attributed due to the addition pozzolanic reaction and the filler effect of nano silica. The incorporation of nano silica increases the fracture energy about 30% for mix without nano silica. Also, size independent fracture energy is arrived using two popular methods, namely, RILEM work of fracture method with $P-{\delta}$ tail correction and boundary effect method. Both the methods resulted in nearly the same size-independent $G_F$ irrespective of the notch to depth ratio of the same specimen. This shows evidence that either of the two procedures could be used in practice for analysis of cracked concrete structures.

CS졸을 이용한 Poly(epoxy-imide)-나노 Silica 하이브리드 필름의 합성과 유전특성 (Synthesis of Poly(epoxy-imide)-Nano Silica Hybrid Film via CS Sol-gel Process and Their Dielectric Properties)

  • 한세원;한동희;강동필;강영택
    • 한국전기전자재료학회논문지
    • /
    • 제20권1호
    • /
    • pp.35-40
    • /
    • 2007
  • The new PEI(poly(epoxy-imide))-nano Silica film has been synthesized via in situ CS sol process, and the chemical bonding and microstructure of nano silica dispersed in resin were examined by FT-IR, TAG and SEM. The dielectric properties of these hybrid films over a given temperature and frequency ranges have been studied in a point of view of stable chemical bonding of nano Silica filler. The results from IR spectra and SEM photograph indicated that PEI-Silica hybrid film prepared with nano CS sol process has been synthesized in uniform and chemical bonding. The decrease property of dielectric constant with CS content, tangent loss consistent of given frequency and temperature has been explained in terms of the chain movement of polymer through chemical bonging and size effect of nano silica. The new PEI-CS sol hybrid film with such stable chemical and dielectric properties was expected to be used as a high functional coating application in ET, IT and electric power products.