• 제목/요약/키워드: Nano Deformation Behavior

검색결과 111건 처리시간 0.025초

입자 함유율의 변화에 따른 나노 실리카 복합재료의 충격파괴거동 (Impact fracture behavior on particle volume fraction of nano silica composite materials)

  • 이정규;고성위
    • 수산해양기술연구
    • /
    • 제51권3호
    • /
    • pp.454-460
    • /
    • 2015
  • The present study is undertaken to evaluate the effect of volume fraction on the results of Charpy impact test for the rubber matrix filled with nano sized silica particles composites. The Charpy impact tests are conducted in the temperature range $0^{\circ}C$ and $-10^{\circ}C$. The range of volume fraction of silica particles tested are between 11% to 25%. The critical energy release rate $G_{IC}$ of the rubber matrix composites filled with nano sized silica particles is affected by silica volume fraction and it is shown that the value of $G_{IC}$ decreases as volume fraction increases. In regions close to the initial crack tip, fracture processes such as matrix deformation, silica particle debonding and delamination, and/or pull out between particles and matrix which is ascertained by SEM photographs of Charpy impact fracture surfaces.

온도변화에 따른 나노 복합재료의 충격거동 (Impact behavior on temperature effect of nano composite materials)

  • 김형진;이정규;고성위
    • 수산해양기술연구
    • /
    • 제51권4호
    • /
    • pp.561-566
    • /
    • 2015
  • In this study, the effect of temperature effect of the rubber matrix filled with nano sized silica particles composites with silica volume fraction of 19-25% was investigated by the Charpy impact test. The Charpy impact test was conducted in the temperature range from $-40^{\circ}C$ to $0^{\circ}C$. The critical energy release rate GIC of the rubber matrix composites filled with nano sized silica particles was considerably affected by temperature and it was shown that the maximum value was appeared at higher temperature between temperature tested and it was shown that the value of GIC increases as temperature tested increases. The major fracture mechanisms were matrix deformation, silica particle debonding and delamination, microcrack between particles and matrix, and/or pull out between particles and matrix which is ascertained by SEM photographs of Charpy impact surfaces fracture.

나노 힘 센서를 이용한 탄소나노튜브 인장물성 측정 (Measurement of Tensile Properties for Carbon Nano Tubes Using Nano Force Sensor)

  • 남승훈;백운봉;박종서;이윤희;권성환;김엄기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.73-76
    • /
    • 2005
  • Carbon nanotubes (CNTs) have attracted an increasing attention due to their superior mechanical properties and potential application in industries. The strength of CNT has been predicted or calculated through several simulation techniques but actual experiments on stress-strain behavior are rare due to its dimensional limit, nanoscale positioning/manipulation, and instrumental resolution. We have attempted to observe straining responses of a multi-walled carbon nanotube (MWNT) by performing an in-situ tensile testing in a scanning electron microscope. The carbon nanotube, having its both ends attached on a cantilever force sensor and Y-shaped support, was elongated by a computer-controlled nanomanipulator. Linear deformation and fracture behaviors of MWNT were successfully observed and its force-displacement curve was also measured from the bending stiffness and displacement of the force sensor and manipulator.

  • PDF

Vibration characteristics of advanced nanoplates in humid-thermal environment incorporating surface elasticity effects via differential quadrature method

  • Ebrahimi, Farzad;Heidari, Ebrahim
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.131-157
    • /
    • 2018
  • In this study, Eringen nonlocal elasticity theory in conjunction with surface elasticity theory is employed to study nonlinear free vibration behavior of FG nano-plate lying on elastic foundation, on the base of Reddy's plate theory. The material distribution is assumed as a power-law function and effective material properties are modeled using Mori-Tanaka homogenization scheme. Hamilton's principle is implemented to derive the governing equations which solved using DQ method. Finally, the effects of different factors on natural frequencies of the nano-plate under hygrothermal situation and various boundary conditions are studied.

나노 구리 분말의 냉간정수압 공정에 대한 치밀화 거동 해석 (Analysis of Densification Behavior of Nano Cu Powders during Cold Isostatic Pressing)

  • 윤승채;김형섭;이창규
    • 한국분말재료학회지
    • /
    • 제11권4호
    • /
    • pp.341-347
    • /
    • 2004
  • In the study, a hybrid constitutive model for densification of metallic powders was applied to cold isostatic pressing. The model is based on a pressure-dependent plasticity model for porous materials combined with a dislocation density-based viscoplastic constitutive model considering microstructural features such as grain size and inter-particle spacing. Comparison of experiment and calculated results of microscale and nanoscale Cu powders was made. This theoretical approach is useful for powder densification analysis of various powder sizes, deformation routes and powder processing methods.

표면효과를 고려한 나노 사이즈 구조물의 local QC 열탄성 해석 (Thermomechanical Local QC Analysis of Nanoscale Structure Considering Surface Effect)

  • 유수영;이승윤;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.415-420
    • /
    • 2007
  • In analyzing the nano-scale behavior of nano devices or materials, QC method is efficient because it does not treat all the atoms. But for more accurate analysis in QC method, it is important to consider temperature and surface effects. In finite temperature, free energy is considered instead of potential energy. Because the surface area to volume ratio increases as the length scale of a body decreases, the surface effects are more dominant. In this paper, temperature related Cauchy-Born rule and surface Cauchy-Born rule are proposed to configurate the strain energy density. This method is applied to small and homogeneous deformation in two dimensional problem using finite element simulation.

  • PDF

나노인덴테이션을 이용하여 극미세 패턴을 제작하기 위한 나노 변형의 유한요소해석(I) (Finite Element Analysis of Nano Deformation for the Hyper-Fine Pattern Fabrication by using Nanoindentation)

  • 이정우;윤성원;강충길
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.210-217
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic restoration and pile-up was proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1-l0mm. The result of the investigation will be applied to the fabrication of the hyper-fine pattern and mold.

Microstructural Wear Mechanism of $Al_2O_3-5$ vol% SiC nanocomposite and $Si_3N_4$Ceramics

  • Riu, Doh-Hyung;Kim, Yoon-Ho;Lee, Soo-Wohn;Koichi Niihara
    • 한국분말재료학회지
    • /
    • 제8권3호
    • /
    • pp.179-185
    • /
    • 2001
  • Through the observation of wear scar of two ceramic materials, microstructural wear mechanisms was investigated. As for the $Al_2O_3$-5 vol% SiC nanocomposite, the grain boundary fracture was suppressed by the presence of SiC nano-particles. The intragranular SiC particles have inhibited the extension of plastic deformation through the whole grain. Part of plastic deformation was accommodated around SiC particles, which made a cavity at the interface between SiC and matrix alumina. On the other hand, gas-pressure sintered silicon nitride showed extensive grain boundary fracture due to the thermal fatigue. The lamination of wear scar was initiated by the dissolution of grain boundary phase. These two extreme cases showed the importance of microstructures in wear behavior.

  • PDF

A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in two-parameter elastic foundation

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.313-336
    • /
    • 2017
  • This article investigates vibration behavior of magneto-electro-elastic functionally graded (MEE-FG) nanobeams embedded in two-parameter elastic foundation using a third-order parabolic shear deformation beam theory. Material properties of MEE-FG nanobeam are supposed to be variable throughout the thickness based on power-law model. Based on Eringen's nonlocal elasticity theory which captures the small size effects and using the Hamilton's principle, the nonlocal governing equations of motions are derived and then solved analytically. Then the influences of elastic foundation, magnetic potential, external electric voltage, nonlocal parameter, power-law index and slenderness ratio on the frequencies of the embedded MEE-FG nanobeams are studied.

Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets

  • Xiaojun Wu
    • Advances in nano research
    • /
    • 제15권2호
    • /
    • pp.141-153
    • /
    • 2023
  • The main objective of this paper is to develop the finite element study on the nonlinear free vibration of functionally graded nanocomposite spherical shells reinforced with graphene platelets under the first-order shear deformation shell theory and von Kármán nonlinear kinematic relations. The governing equations are presented by introducing the full asymmetric nonlinear strain-displacement relations followed by the constitutive relations and energy functional. The extended Halpin-Tsai model is utilized to specify the overall Young's modulus of the nanocomposite. Then, the finite element formulation is derived and the quadrilateral 8-node shell element is implemented for finite element discretization. The nonlinear sets of dynamic equations are solved by the use of the harmonic balance technique and iterative method to find the nonlinear frequency response. Several numerical examples are represented to highlight the impact of involved factors on the large-amplitude vibration responses of nanocomposite spherical shells. One of the main findings is that for some geometrical and material parameters, the fundamental vibrational mode shape is asymmetric and the axisymmetric formulation cannot be appropriately employed to model the nonlinear dynamic behavior of nanocomposite spherical shells.