• 제목/요약/키워드: Nano Channel Flow

검색결과 29건 처리시간 0.024초

Effects of Ionic Strength in the Medium on Sample Preconcentration Utilizing Nano-interstices between Self-Assembled Monolayers of Gold Nanoparticles

  • Nguyen, Ngoc-Viet;Wu, Jian-Sheng;Jen, Chun-Ping
    • BioChip Journal
    • /
    • 제12권4호
    • /
    • pp.317-325
    • /
    • 2018
  • This paper investigated the effects of ionic strength in the medium on a preconcentrator for a protein sample with low concentration. The preconcentration chip was designed and fabricated using a polydimethylsiloxane replica through standard lithophotography. A glass substrate is silanized prior to functionalizing the nanoparticles for self-assembly at a designed region. Due to the overlap of electrical double layers in a nanofluidic channel, a concentration polarization effect can be achieved using an electric field. A nonlinear electrokinetic flow is induced, resulting in the fast accumulation of proteins in front of the induced ionic depletion zone, so called exclusion-enrichment effect. Thus, the protein sample can be driven by electroosmotic flow and accumulated at a specific location. The chip is used to collect fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) diluted in phosphate-buffered saline (PBS) buffer solution. Different concentrations of the buffer media were studied herein. Fluorescence intensity images show that the buffer concentration of 4 mM is more appropriate than all the other ones. The sample of FITC-BSA with an initial concentration of $10{\mu}M$ in the 4 mM PBS solution increases its concentration at the desired region by up to 50 times within 30 min, demonstrating the results in this investigation.

Anodic Aluminum Oxide Membrane을 통한 고분자 사슬의 선택적 투과 (Sieving the Polymer Chains through Anodic Aluminum Oxide Membranes)

  • 최용준;이한섭
    • 멤브레인
    • /
    • 제26권4호
    • /
    • pp.291-300
    • /
    • 2016
  • 분리막(Separation membrane)을 이용하여 기체 또는 액체상태로 존재하는 분자들을 선택적으로 분리하는 기술은 화학, 생물, 제약, 석유화학 등의 산업에서 매우 다양하게 응용되고 있으며 산업적으로 매우 큰 비중을 차지하고 있다. Anodic aluminum oxide (AAO) 막은 nanochannel의 직경, nanochannel 간의 거리 및 원통형 nanochannel의 길이 등을 정밀하게 조절할 수 있어 AAO 막을 이용하여 혼합분자를 효과적으로 분리하려는 다양한 연구가 진행되고 있다. 본 연구에서는 양 말단이 열려있어 through-hole 구조로 다양한 직경의 nanochannel을 가지는 AAO 막을 제작하였으며, 이것을 이용하여 용매에 녹아있는 고분자 사슬의 수력학적 부피에 따른 선택적 투과를 관찰하였다. Nanochannel을 투과한 고분자 사슬의 회전반지름과 nanochannel의 직경 사이에 정량적인 관계가 있음을 확인하였다. 또한 AAO 막의 nanochannel을 흐르는 고분자 용액의 유동률(flow rate)이 Hagen-Poiseuille 관계식으로 정확하게 설명될 수 있음을 확인하여 AAO 내에 존재하는 원통형태의 nanochannel 내에서 흐르는 용액의 나노흐름(nanoflow)에 대한 이론적 해석이 가능함을 증명하였다.

전도성 AFM 탐침에 의한 YBa2Cu3O7-x 스트립 라인의 산화피막 형성 (Anodization Process of the YBa2Cu3O7-x Strip Lines by the Conductive Atomic Force Microscope Tip)

  • 고석철;강형곤;임성훈;한병성;이해성
    • 한국전기전자재료학회논문지
    • /
    • 제17권8호
    • /
    • pp.875-881
    • /
    • 2004
  • Fundamental results obtained from an atomic force microscope (AFM) chemically-induced direct nano-lithography process are presented, which is regarded as a simple method for fabrication nm-scale devices such as superconducting flux flow transistors (SFFTs) and single electron tunneling transistors (SETs). Si cantilevers with Pt coating and with 30 nm thick TiO coating were used as conducting AFM tips in this study. We observed the surfaces of superconducting strip lines modified by AFM anodization' process. First, superconducting strip lines with scan size 2 ${\mu}{\textrm}{m}$${\times}$2 ${\mu}{\textrm}{m}$ have been anodized by AFM technology. The surface roughness was increased with the number of AFM scanning, The roughness variation was higher in case of the AFM tip with a positive voltage than with a negative voltage in respect of the strip surface. Second, we have patterned nm-scale oxide lines on ${YBa}-2{Cu}_3{O}_{7-x}$ superconducting microstrip surfaces by AFM conductive cantilever with a negative bias voltage. The ${YBa}-2{Cu}_3{O}_{7-x}$ oxide lines could be patterned by anodization technique. This research showed that the critical characteristics of superconducting thin films were be controlled by AFM anodization process technique. The AFM technique was expected to be used as a promising anodization technique for fabrication of an SFFT with nano-channel.

스트레스 감도 향상을 위한 턴 온 직후의 조름 효과를 이용한 얇은 질화막 폴리실리콘 전계 효과 트랜지스터 압력센서 (A Polysilicon Field Effect Transistor Pressure Sensor of Thin Nitride Membrane Choking Effect of Right After Turn-on for Stress Sensitivity Improvement)

  • 정한영;이정훈
    • 센서학회지
    • /
    • 제23권2호
    • /
    • pp.114-121
    • /
    • 2014
  • We report a polysilicon active area membrane field effect transistor (PSAFET) pressure sensor for low stress deflection of membrane. The PSAFET was produced in conventional FET semiconductor fabrication and backside wet etching. The PSAFET located at the front side measured pressure change using 300 nm thin-nitride membrane when a membrane was slightly strained by the small deflection of membrane shape from backside with any physical force. The PSAFET showed high sensitivity around threshold voltage, because threshold voltage variation was composed of fractional function form in sensitivity equation of current variation. When gate voltage was biased close to threshold voltage, a fractional function form had infinite value at $V_{tn}$, which increased the current variation of sensitivity. Threshold voltage effect was dominant right after the PSAFET was turned on. Narrow transistor channel established by small current flow was choked because electron could barely cross drain-source electrodes. When gate voltage was far from threshold voltage, threshold voltage effect converged to zero in fractional form of threshold voltage variations and drain current change was mostly determined by mobility changes. As the PSAFET fabrication was compatible with a polysilicon FET in CMOS fabrication, it could be adapted in low pressure sensor and bio molecular sensor.

Steric 모드의 침강장-흐름 분획법을 이용한 황사의 특성분석 (Characterization of Asian dust using steric mode of sedimentation field-flow fractionation (Sd/StFFF))

  • 음철헌;김본경;강동영;이승호
    • 분석과학
    • /
    • 제25권6호
    • /
    • pp.476-482
    • /
    • 2012
  • 황사입자들은 수 나노미터에서 수 마이크론 사이의 크기를 가지는 것으로 알려져 있다. 황사가 환경 및 인체 건강에 미치는 영향은 황사 입자의 크기에 의존한다. 입자가 작을수록 멀리까지 이동하며, 인체의 호흡기관 깊숙이 침투한다. 침강장-흐름 분획법(sedimentation field-flow fractionation, SdFFF)은 채널 내 포물선형태의 흐름(parabolic flow profile)과 외부에서 가해지는 원심력의 상호작용을 이용하여 나노 및 마이크론 크기의 입자들의 분리를 제공한다. 본 연구에서는 황사입자의 크기별 분리와 특성분석을 위한 steric 모드 침강장-흐름 분획법(Sd/StFFF)의 응용 가능성을 테스트하였다. 이를 위하여 다양한 Sd/StFFF 파라미터들을(유속, stop-flow time, 원심력의 세기, 등) 최적화 하였다. Sd/StFFF 보정곡선의 $R^2$값은 0.9983으로 높은 직선성을 보였으며, 실험결과는 Sd/StFFF가 마이크론 입자의 크기별 분리에 우수함을 보여주었다. 광학현미경(optical microscopy, OM)을 이용하여 황사입자들의 크기와 모양을 조사하였다. 황사가 진할 때에는 약할 때보다 입자크기가 증가함을 보여주었다. 또한 비가 올 때에는 건조할 때보다 입자크기가 감소하였는데, 이는 입자 표면에 흡착되어 있는 성분들이 빗물에 의해 제거되었기 때문인 것으로 보여진다. 본 연구의 결과는 Sd/StFFF가 황사와 같이 환경입자의 크기특성분석에 유용함을 보여준다.

국소 자기장의 순/역 배열을 이용한 미세유체 채널 내에서의 강자성 입자 패턴 형성 (In-situ Patterning of Magnetic Particles in Microfluidic Channels by Forward/Reverse Local Magnet Arrangement)

  • 박현향;이지혜;유영은;김정엽;장성환
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권3호
    • /
    • pp.217-223
    • /
    • 2015
  • 유체채널 내에서의 미세입자의 패터닝은 생물 및 의료 응용분야에서 활용될 가치가 높은 응용 기술이다. 본 연구는 미세유체 채널 내에서 구조물 없이 외부 자석의 배열만을 이용한 미세입자 패터닝 방법을 제안한다. 자석의 같은 극과 서로 다른 극끼리의 배열을 이용한 일렬 배열, 적층 배열 등을 고안하여, 다양한 미세입자 패터닝에 실험적으로 적용하였다. 서로 같은 극끼리의 배열은 입자 포획에 쉽게 적용 가능하여, 독립적 배열이 가능하였다. 특히 적층 배열은 다양한 패터닝을 할 수 있음을 확인할 수 있었다. 자기력 1.08mT 수준에서까지 자석 배열에 의한 일정한 패턴을 관찰할 수 있었고, 패터닝된 입자들은 20 ml/hr 의 유체 속도에서도 안정하게 유지되었다. 본 연구는 간단하면서도 자성 입자의 다양한 패터닝을 가능케 하는 방법으로 면역자기성 입자를 이용한 의학/바이오 분야로의 폭넓은 응용을 기대케 한다.

Highly Sensitive Biological Analysis Using Optical Microfluidic Sensor

  • Lee, Sang-Yeop;Chen, Ling-Xin;Choo, Jae-Bum;Lee, Eun-Kyu;Lee, Sang-Hoon
    • Journal of the Optical Society of Korea
    • /
    • 제10권3호
    • /
    • pp.130-142
    • /
    • 2006
  • Lab-on-a-chip technology is attracting great interest because the miniaturization of reaction systems offers practical advantages over classical bench-top chemical systems. Rapid mixing of the fluids flowing through a microchannel is very important for various applications of microfluidic systems. In addition, highly sensitive on-chip detection techniques are essential for the in situ monitoring of chemical reactions because the detection volume in a channel is extremely small. Recently, a confocal surface enhanced Raman spectroscopic (SERS) technique, for the highly sensitive biological analysis in a microfluidic sensor, has been developed in our research group. Here, a highly precise quantitative measurement can be obtained if continuous flow and homogeneous mixing condition between analytes and silver nano-colloids are maintained. Recently, we also reported a new analytical method of DNA hybridization involving a PDMS microfluidic sensor using fluorescence energy transfer (FRET). This method overcomes many of the drawbacks of microarray chips, such as long hybridization times and inconvenient immobilization procedures. In this paper, our recent applications of the confocal Raman/fluorescence microscopic technology to a highly sensitive lab-on-a-chip detection will be reviewed.

비정질 IZTO기반의 투명 박막 트렌지스터 특성 (Characteristics of amorphous IZTO-based transparent thin film transistors)

  • 신한재;이근영;한동철;이도경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.151-151
    • /
    • 2009
  • Recently, there has been increasing interest in amorphous oxide semiconductors to find alternative materials for an amorphous silicon or organic semiconductor layer as a channel in thin film transistors(TFTs) for transparent electronic devices owing to their high mobility and low photo-sensitivity. The fabriction of amorphous oxide-based TFTs at room temperature on plastic substrates is a key technology to realize transparent flexible electronics. Amorphous oxides allows for controllable conductivity, which permits it to be used both as a transparent semiconductor or conductor, and so to be used both as active and source/drain layers in TFTs. One of the materials that is being responsible for this revolution in the electronics is indium-zinc-tin oxide(IZTO). Since this is relatively new material, it is important to study the properties of room-temperature deposited IZTO thin films and exploration in a possible integration of the material in flexible TFT devices. In this research, we deposited IZTO thin films on polyethylene naphthalate substrate at room temperature by using magnetron sputtering system and investigated their properties. Furthermore, we revealed the fabrication and characteristics of top-gate-type transparent TFTs with IZTO layers, seen in Fig. 1. The experimental results show that by varying the oxygen flow rate during deposition, it can be prepared the IZTO thin films of two-types; One a conductive film that exhibits a resistivity of $2\times10^{-4}$ ohm${\cdot}$cm; the other, semiconductor film with a resistivity of 9 ohm${\cdot}$cm. The TFT devices with IZTO layers are optically transparent in visible region and operate in enhancement mode. The threshold voltage, field effect mobility, on-off current ratio, and sub-threshold slope of the TFT are -0.5 V, $7.2\;cm^2/Vs$, $\sim10^7$ and 0.2 V/decade, respectively. These results will contribute to applications of select TFT to transparent flexible electronics.

  • PDF

설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009)

  • 한화택;이대영;김서영;최종민;백용규;권영철
    • 설비공학논문집
    • /
    • 제22권7호
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.