• 제목/요약/키워드: Nano Carbon Piezoresistive Composite

검색결과 6건 처리시간 0.019초

3D 프린팅을 활용한 탄소 나노 튜브 전왜성 복합소재 기반 압력 센서 개발 연구 (A Study on the Development of a Novel Pressure Sensor based on Nano Carbon Piezoresistive Composite by Using 3D Printing)

  • 김성용;강인필
    • 대한기계학회논문집A
    • /
    • 제41권3호
    • /
    • pp.187-192
    • /
    • 2017
  • 본 논문에서는 탄소나노튜브 전왜성 복합소재(Nano-Carbon Piezoresistive Composite, NCPC)를 기반으로 하며, 3D 프린팅 공정을 활용하여 제작된 압력센서의 개발 진행 연구를 소개하였다. 압력센서의 성능을 향상시키기 위하여 센서전극을 외팔보 형태로 설계하였고 3D 프린팅 공정을 활용하여 소형전극을 제작하였다. 압력을 전기적 저항의 변화로 바꾸는 전왜성 센서의 전극은 2wt%의 다중벽 탄소나노튜브/에폭시 전왜성 복합소재로 제작하였다. 센서는 압력시스템에 용이하게 적용하기 위하여 파이프 플러그 캡에 삽입하여 제작을 하였으며, 실험실 환경에서 압력교정기를 활용하여 실험을 하였다. 외팔보 전극의 압력센서는 16,500kPa까지 선형적인 출력전압 특성을 보였으며, 이는 벌크형 전극의 압력센서 대비 약 200% 압력측정 성능 향상을 보였다.

탄소나노튜브 복합소재 전왜 특성과 3D 프린팅을 활용한 로드셀 개발 연구 (A Study on Load Cell Development by means of a Nano-Carbon Piezo-resistive Composite and 3D printing)

  • 강인필;정관영;최백규;김성용;오광원;김병탁;백운경
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권4호
    • /
    • pp.97-102
    • /
    • 2020
  • This paper presents the basic research for the design and fabrication of a 3D-printed load cell made of NCPC (nano-carbon piezo-resistive composite). We designed a structure that can resonate at a low frequency range of about 5-6 Hz with ANSYS using sensitivity analysis and a response surface method. The design was verified by fabricating the device with a low-quality commercial 3D printer and ABS filament. We conducted a feasibility test for a commercial sensor using 1000 cyclic load tests at 0.3 Hz in a material testing system. A manufacturing process for the 3D printer filament based on the NCPC was also developed using the nano-composite process.

Gold functionalized-graphene oxide-reinforced acrylonitrile butadiene rubber nanocomposites for piezoresistive and piezoelectric applications

  • Mensah, Bismark;Kumar, Dinesh;Lee, Gi-Bbeum;Won, Joohye;Gupta, Kailash Chandra;Nah, Changwoon
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.1-13
    • /
    • 2018
  • Gold functionalized graphene oxide (GOAu) nanoparticles were reinforced in acrylonitrile-butadiene rubbers (NBR) via solution and melt mixing methods. The synthesized NBR-GOAu nanocomposites have shown significant improvements in their rate of curing, mechanical strength, thermal stability and electrical properties. The homogeneous dispersion of GOAu nanoparticles in NBR has been considered responsible for the enhanced thermal conductivity, thermal stability, and mechanical properties of NBR nanocomposites. In addition, the NBR-GOAu nanocomposites were able to show a decreasing trend in their dielectric constant (${\varepsilon}^{\prime}$) and electrical resistance on straining within a range of 10-70%. The decreasing trend in ${\varepsilon}^{\prime}$ is attributed to the decrease in electrode and interfacial polarization on straining the nanocomposites. The decreasing trend in electrical resistance in the nanocomposites is likely due to the attachment of Au nanoparticles to the surface of GO sheets which act as electrical interconnects. The Au nanoparticles have been proposed to function as ball rollers in-between GO nanosheets to improve their sliding on each other and to improve contacts with neighboring GO nanosheets, especially on straining the nanocomposites. The NBR-GOAu nanocomposites have exhibited piezoelectric gauge factor (${GF_{\varepsilon}}^{\prime}$) of ~0.5, and piezo-resistive gauge factor ($GF_R$) of ~0.9 which clearly indicated that GOAu reinforced NBR nanocomposites are potentially useful in fabrication of structural, high temperature responsive, and stretchable strain-sensitive sensors.

압력센서 개발을 위한 탄소 나노 튜브 기반 지능형 복합소재 전왜 특성 연구 (A Study on Piezoresistive Characteristics of Smart Nano Composites based on Carbon Nanotubes for a Novel Pressure Sensor)

  • 김성용;김현호;최백규;강인혁;이일영;강인필
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권1호
    • /
    • pp.43-48
    • /
    • 2016
  • This paper presents a preliminary study on the pressure sensing characteristics of smart nano composites made of MWCNT (multi-walled carbon nanotube) to develop a novel pressure sensor. We fabricated the composite pressure sensor by using a solution casting process. Made of carbon smart nano composites, the sensor works by means of piezoresistivity under pressure. We built a signal processing system similar to a conventional strain gage system. The sensor voltage outputs during the experiment for the pressure sensor and the resistance changes of the MWCNT as well as the epoxy based on the smart nano composite under static pressure were fairly stable and showed quite consistent responses under lab level tests. We confirmed that the response time characteristics of MWCNT nano composites with epoxy were faster than the MWCNT/EPDM sensor under static loads.

3D 프린팅 센서 연구 동향 소개-전왜성 변형/로드셀 센서 중심으로 (A review of 3D printing technology for piezoresistive strain/loadcell sensors)

  • 조정훈;문현우;김성용;최백규;오광원;정관영;강인필
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.388-394
    • /
    • 2021
  • The conventional microelectromechanical system (MEMS) process has been used to fabricate sensors with high costs and high-volume productions. Emerging 3D printing can utilize various materials and quickly fabricate a product using low-cost equipment rather than traditional manufacturing processes. 3D printing also can produce the sensor using various materials and design its sensing structure with freely optimized shapes. Hence, 3D printing is expected to be a new technology that can produce sensors on-site and respond to on-demand demand by combining it with open platform technology. Therefore, this paper reviews three standard 3D printing technologies, such as Fused Deposition Modeling (FDM), Direct Ink Writing (DIW), and Digital Light Processing (DLP), which can apply to the sensor fabrication process. The review focuses on strain/load sensors having both sensing material features and structural features as well. NCPC (Nano Carbon Piezoresistive Composite) is also introduced as a promising 3D material due to its favorable sensing characteristics.

Study of body movement monitoring utilizing nano-composite strain sensors contaning Carbon nanotubes and silicone rubber

  • Azizkhani, Mohammadbagher;Kadkhodapour, Javad;Anaraki, Ali Pourkamali;Hadavand, Behzad Shirkavand;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • 제35권6호
    • /
    • pp.779-788
    • /
    • 2020
  • Multi-Walled Carbon nanotubes (MWCNT) coupled with Silicone Rubber (SR) can represent applicable strain sensors with accessible materials, which result in good stretchability and great sensitivity. Employing these materials and given the fact that the combination of these two has been addressed in few studies, this study is trying to represent a low-cost, durable and stretchable strain sensor that can perform excellently in a high number of repeated cycles. Great stability was observed during the cyclic test after 2000 cycles. Ultrahigh sensitivity (GF>1227) along with good extensibility (ε>120%) was observed while testing the sensor at different strain rates and the various number of cycles. Further investigation is dedicated to sensor performance in the detection of human body movements. Not only the sensor performance in detecting the small strains like the vibrations on the throat was tested, but also the larger strains as observed in extension/bending of the muscle joints like knee were monitored and recorded. Bearing in mind the applicability and low-cost features, this sensor may become promising in skin-mountable devices to detect the human body motions.