• Title/Summary/Keyword: Nano 입자

Search Result 1,082, Processing Time 0.038 seconds

Manufacture and Electrical Properties of PAI-MCS-A Nano-hybrid Enamel for Insulation (절연용 PAI-MCS-A 나노하이브리드 에나멜의 제조와 전기적특성)

  • Han, Se-Won;Han, Dong-Hee;Kim, Suk-Jun;Jang, He-Mi;Kang, Dong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.497-498
    • /
    • 2008
  • 에너지절약에 대한 중요성과 관심으로 효율을 높이고 인버터 구동에 대한 서지내구성이 강화된 전동기용 절연소재의 개발에 관심이 커지고 있다. 최근 나노기술의 발달로 전동기용 에나멜 절연재에 나노입자를 강화하여 성능과 효율의 향상이 크게 개선되고 있다. 본 연구에서는 졸겔 제조법으로 PAI-MCS-A계 나노 하이브리드형 에나멜을 제조하여 기존 수지와의 전기적 특성을 비교 분석하였다. 강화입자로 선택한 나노 MCS의 조성을 최대 30wt% 범위에서 메트릭스 수지와의 상안정성이 확인되었다. 특히 내아크성, 트래킹 시험에서 우수한 내구성이 나타났으며 이는 전동기용 에나멜 및 전력용 절연코팅용으로 사용이 기대된다.

  • PDF

The Effect of Fuel Injection Strategy on Combustion and Nano-particle Emissions in a Small Diesel Engine (소형디젤기관의 연료분사조건에 따른 연소 및 미세입자 배출 특성에 관한 연구)

  • Kang, Seok-Ho;Lee, Seang-Wock;Eom, Dong-Seop
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.98-106
    • /
    • 2014
  • Emission standards for passenger diesel engines are becoming more and more stringent. Especially, Europe started the regulation of nano-particles from 2011 with EURO 5b. The objective of this study is to investigate the effect of fuel injection strategy on combustion and nano-particle emission in a small diesel engine. In this study, we conducted combustion analysis and measured both the weight of PM and number of nano-particels. At first, the optimum injection timing was determined with fixed engine operating conditions, such as engine speed, load, and fuel injection quantity. After that, the injection timing was controlled, and the effect of pilot injection was investigated. The number of nano-particles increased as engine load decreases, and it increased up to 10 times depending on the change of injection timing. The weight of PM emissions was increased at low load, and the PM emissions increased with increasing the number of pilot injections.

Fabrication and sintering of nano $TiN_x$ and its composites (Nano $TiN_x$와 그 복합체의 제조 및 소결)

  • Kim, Dong-Sik;Kim, Sung-Jin;Rahno, Khamidova;Park, Sung-Bum;Park, Seung-Sik;Lee, Hye-Jeong;Lee, Sang-Woo;Cho, Kyeong-Sik;Woo, Heung-Sik;Ahn, Joong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.3
    • /
    • pp.101-105
    • /
    • 2006
  • We fabricated the nano $TiN_x$ by making of reaction between titanium powder and $Si_3N_4$ during planetary milling. The $TiN_x$ powder was sintered by spark plasma sintering machine after mixing with 50 wt% of titanium powder, and the sintered body was heat-treated at $850^{\circ}C$ in order to investigate its hardness property at the elevated temperature. We analyzed crystal structure by XRD. We observed the peaks of $TiN_{0.26}$ and TiN after 10 hours milling, and we observed TiN peak mainly after 20 hours milling. The reacted particle size distribution was investigated by FE-SEM. Increase of milling time, the size of reacted particles was decreased and the $10{\sim}20nm$ size of $TiN_x$ on the surface of titanium and $TiN_x$ was observed after 20 hours milling. The micro-Vickers hardness of mixed sintered body was about $1050kgf/mm^2$.

A Recent Research Trends for Food Emulsions using Pickering Stabilization of Nano-particles (나노 입자의 피커링 안정화를 이용한 식품 에멀젼의 최근 연구동향)

  • Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.238-247
    • /
    • 2012
  • Nanotechnology in the food industry is an emerging area with considerable research and potential products. Solid particles of nanoscale and microscale dimensions are becoming recognized for their potential application in the formulation of novel dispersed systems containing emulsified oil or water droplets. This review describes developments in the formation and properties of food-grade emulsion systems based on edible fat crystals, silica nanoparticles, and novel particles of biological origin nanocrystals. The special features characterizing the properties of Pickering stabilized droplets are focused in comparison with those of protein-stabilized emulsions. We also review describes application examples of these in the food industry.

Flow Characteristics Investigation of Gel Propellant with Al2O3 Nano Particles in a Curved Duct Channel (Al2O3 나노입자가 젤(Gel) 추진제의 곡관 유동특성에 미치는 연구)

  • Oh, Jeongsu;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.47-55
    • /
    • 2013
  • Curved duct channel flow characteristics for non-Newtonian gel fluid is investigated. A simulant gel propellant mixed by Water, Carbopol 941 and NaOH solution has been chosen to analyze the gel propellant flow behavior. Rheological data have been measured prior to the flow analysis where water-gel propellant and water-gel propellant with $Al_2O_3$ nano particles are both used. The critical Dean number examined by the numerical simulation in the U-shape duct flow reveals that although water-gel-nano propellants have higher apparent viscosity, the critical Dean number do show no notable difference for both the two gel propellant. It is found that the power-law index may be a dominant parameter in determining the critical Dean number and that the gel with particles addition may be more vulnerable to Dean instability.

Effect of Parameters for Real-time Measurement of Nano Aerosols (나노 에어로졸의 실시간 측정에 영향을 미치는 인자)

  • 지준호;노형수;오상경
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2004.11a
    • /
    • pp.117-118
    • /
    • 2004
  • 에어로졸의 측정은 다양한 변수에 영향을 받는다. 입자가 공기 중에 떠 있으므로 입자 주위의 유체온도와 압력에 영향을 받을 뿐 아니라 측정 대상인 입자의 크기, 농도, 하전 상태에 따라서 제약을 받는다. 특히, 에어로졸의 발생이나 측정은 복잡한 메커니즘으로 이루어지기 때문에 장비의 성능을 평가하거나 교정하는 과정은 쉽지 않고, 적당한 지침이나 문헌 또한 부족한 실정이다. 고농도, 고하전인 극한 조건에서 나노 에어로졸 입자를 측정하는 경우에는 측정 장비가 신뢰성 있는 결과를 제공할 수 있도록, 측정 대상인 나노 입자의 하전량, 형상, 크기 분포를 미리 예측하여 SMPS의 운전조건을 적절하게 결정할 수 있도록 미리 확인해야 한다

  • PDF

An Experimental Study on Performance of Vapor Compression Refrigeration Cycle with Al2O3 nano-particle (Al2O3 나노 입자를 적용한 증기 압축 냉동 사이클의 성능)

  • Kim, Jeongbae;Lee, Kyu-Sun;Lee, Geunan
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.124-129
    • /
    • 2015
  • An experimental study was performed estimating COP(Coefficient of Performance) of air-conditioning cycle using inverter scroll compressor with and without $Al_2O_3$ nano particle. All experiments were done for various compressor speeds from 1000~4000 rpm and used the inverter controller called CANDY to change the compressor rpm. The air-conditioning cycle components in the apparatus were used as same with components of YF hybrid car. To estimate the COP, this study measured the temperature and pressure at inlets and outlets of compressor, condenser, and evaporator. And also measured the compressor input power using Powermeter. Through the experiments, the maximum error to estimate COP was shown about ${\pm}6.09%$ at 3500rpm. The COP of refrigeration cycle with $Al_2O_3$ nano-particle was similar with that of the base cycle without nano-particle between 1000~3000 rpm of the compressor speed. But, This study showed that the COP of the cycle with $Al_2O_3$ over 3000 rpm of the compressor speed was higher than that of the base cycle due to the higher heat transfer rate increased in the evaporator from the higher oil flow rate inside the cycle as well known. Those results can be used the basic and fundamental data to design the air-conditioning cycle using inverter scroll compressor with $Al_2O_3$ nano particle.