• Title/Summary/Keyword: Nano 입자

Search Result 1,082, Processing Time 0.027 seconds

Effect of Eu in Partial Oxidation of Methane to Hydrogen over Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, and Tb) Catalysts (Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, Tb) 촉매상에서 수소제조를 위한 메탄의 부분 산화 반응에서 Eu의 효과)

  • Seo, Ho Joon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.478-482
    • /
    • 2021
  • The catalytic yields of partial oxidation of methane (POM) to hydrogen over Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, and Tb) were investigated in a fixed bed flow reactor under atmosphere. As 1 wt% of Eu was added to Ni(5)/SBA-15 catalyst, the O1s and Si2p core electron levels of Eu(1)-Ni(5)/SBA-15 showed the chemical shift by XPS. XPS analysis also demonstrated that the atomic ratio of O1s, Ni2p3/2, and Si2p increased to 1.284, 1.298, and 1.058, respectively, and exhibited O-, and O2- oxygen and metal ions such as Eu3+, Ni0, Ni2+, and Si4+ on the catalyst surface. The yield of hydrogen on the Eu(1)-Ni(5)/SBA-15 was 57.2%, which was better than that of Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Pr, and Tb), the catalytic activity was kept steady even 25 h. As 1 wt% of Eu was added to Ni(5)/SBA-15, the oxygen vacancies caused by strong metal-support interaction (SMSI) effect due to the strong interaction between metals and carrier are made. They are resulted in increasing the dispersion of Ni0, and Ni2+ nano particles on the surface of catalyst, and are kept catalytic activity.

Effect of Amino Modified Siloxanes with Two Different Molecular Weights on the Properties of Epoxy Composites for Adhesives for Micro Electronics (전자소재 접착제용 에폭시에 두 종의 다른 당량수를 갖는 아미노 변성 실록산이 미치는 영향)

  • Yu, Kihwan;Kim, Daeheum
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.104-108
    • /
    • 2011
  • In the non-conductive adhesives (NCAs) for adhesion of micro electro mechanical system (MEMS), there are some problems such as delamination and cracking resulting from the large differences of coefficients of thermal expansion (CTE) between NCAs and substrates. So, the addition of inorganic particles such as silica and nano clay to the CTEs composit have been applied to reduce the CTEs of the adhesives. Additions of the flexibilizers such as siloxanes have also been performed to improve the flexibility of epoxy composite. Amino modified siloxane (AMSs) were used to improve compatibility between epoxy and siloxane. In this study, glass transition temperatures (Tg) and moduli of those composites were measured to confirm the effects of AMS with two different equivalents on thermal/mechanical properties of AMS/epoxy composites. Tg of KF-8010/epoxy composites decreased from 148 to $122^{\circ}C$ and those of X-22-161A/epoxy composites decreased from 148 to $121^{\circ}C$. Moduli of KF-8010/epoxy composites decreased from 2648 to 2143 MPa by adding KF-8010 and moduli of X-22-161A/epoxy composites decreased from 2648 to 2014 MPa. In short, using long Si-O chain AMS leads to a greater decrease in moduli. However, haven't showed significant differences in Tg's.

Hydrophobicity and Adhesion of SiO2/Polyurethane Nanocomposites Topcoat for Aircraft De-icing with Different Pre-curing Time (선경화 시간에 따른 항공기 De-icing용 나노실리카/폴리우레탄 복합재료 탑코트의 소수성 및 접착특성 평가)

  • Kim, Jong-Hyun;Shin, Pyeong-Su;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.365-370
    • /
    • 2020
  • The icing formation at aircraft occur problems such as increasing weight of the body, fuel efficiency reduction, drag reduction, the error of sensor, and etc. The viscosity of polyurethane (PU) topcoat was measured at 60℃ in real time to set the pre-curing time. SiO2 nanoparticles were dispersed in ethanol using ultra-sonication method. The SiO2/ethanol solution was sprayed on PU topcoat that was not cured fully with different pre-curing conditions. Surface roughness of SiO2/PU nanocomposites were measured using surface roughness tester and the surface roughness data was visualized using 3D mapping. The adhesion property between SiO2 and PU topcoat was evaluated using adhesion pull-off test. The static contact angle was measured using distilled water to evaluate the hydrophobicity. Finally, the pre-curing time of PU topcoat was optimized to exhibit the hydrophobicity of SiO2/PU topcoat.

Enhanced Thermoelectric Properties in n-Type Bi2Te3 using Control of Grain Size (Grain 크기 조절을 통한 n-Type Bi2Te3 열전 소재 특성 향상)

  • Lee, Nayoung;Ye, Sungwook;Jamil Ur, Rahman;Tak, Jang-Yeul;Cho, Jung Young;Seo, Won Seon;Shin, Weon Ho;Nam, Woo Hyun;Roh, Jong Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.91-96
    • /
    • 2021
  • The enhancement of thermoelectric figure of merit was achieved by the simple processes of sieving and high energy ball milling, respectively, which are enable to reduce the grain size of n-type Bi2Te3 thermoelectric materials. By optimizing the grain size, the electrical conductivities and thermal conductivities were controlled. In this study, spark plasma sintering was employed for hindering the grain growth during the sintering process. The thermoelectric figure of merit was measured to be 0.78 in the samples with 30 min high energy ball milling process. Notably, this value was 40 % higher than that of pristine Bi2Te3 sample. This result shows the properties of thermoelectric materials can be readily controlled by optimization of grain size via simple ball milling process.

Synthesis of Zn-intermediate from alkali agents and its transformation to ZnO crystallinity (알칼리 침전제에 의해 제조된 아연 중간생성물 및 산화아연 결정화)

  • Jang, Dae-Hwan;Kim, Bo-Ram;Kim, Dae-Weon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.270-275
    • /
    • 2021
  • ZnO was synthesized according to the transformation behavior and crystallization conditions of Zn-intermediate obtained by zinc sulfate as a precursor and NaOH, Na2CO3 as a alkali agents. For ZnO crystallization, Zn4(OH)6SO4·H2O and Zn5(OH)6(CO3)2·H2O as a Zn-intermediate were calcined at 400℃ and 800℃ for 1 h, respectively, based on decomposition temperature from TGA. Zn4(OH)6SO4·H2O was confirmed to have mixed Zn4(OH)6SO4·H2O and ZnO at 400℃, and was completely thermally decomposed at 800℃ to form ZnO phase. The prepared Zn5(OH)6(CO3)2·H2O as a Zn-intermediate by the reaction with Na2CO3 was transformed to a complete ZnO crystallization over 400℃. Nano-sized ZnO can be synthesized at a relatively lower calcination temperature through the reaction with Na2CO3.

Synthesis and photoluminescence characteristics of SrAl2O4:Mn4+ phosphor for LED applications (LED용 SrAl2O4:Mn4+ 형광체 합성 및 발광특성 연구)

  • Byoung Su Choi;Jun Ho Lee;Sungu Hwang;Jin Kon Kim;Byeong Woo Lee;Hyun Cho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 2023
  • A non-rare earth-based strontium-aluminate red light emitting phosphor was synthesized by a solid-state reaction method and the effect of synthesis temperature and Mn4+ activator concentration on the photoluminescence characteristics of the phosphor was studied. The synthesized SrAl2O4:Mn4+ phosphor showed broad band absorption characteristics in the near-ultraviolet and blue regions with peaks at wavelengths of near 330 and 460 nm, and a triple band deep red emission consisted of three peaks at near 644, 658, and 673 nm. The SrAl2O4:Mn4+ phosphor synthesized at a temperature 1600℃ and a Mn4+ activator concentration of 0.5 mol% showed the strongest PL emission intensity, and concentration quenching was observed at concentrations higher than 0.7 mol%. FE-SEM and DLS particle size distribution analysis showed that the synthesized SrAl2O4:Mn4+ phosphor had a particle size distribution of 2~6.4 ㎛ and an irregular spherical shape with an average particle size of ~4 ㎛.

Bioaccumulation of Ag and Zn in earthworms (Eisenia fetida) from soil contaminated with Ag and Zn nanoparticles using a radiotracer method (방사성동위원소 추적자 기법을 이용한 제조나노입자로 오염된 토양으로부터 지렁이(Eisenia fetida)의 은과 아연 축적 연구)

  • Seung Ha Lee;Byeong-Gweon Lee
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.550-558
    • /
    • 2021
  • In a radiotracer study, the bioaccumulation and efflux of metals in earthworms (Eisenia fetida) exposed to soil spiked with ZnO and Ag nanoparticles (AgNP) were compared to those exposed to soil spiked with ionic Zn and Ag. Additionally, the bioavailability and chemical mobility of nano- and ionic metals in the soil were estimated using the sequential extraction method and compared to the bioaccumulation factor(BAF). The BAF for ZnO (0.06) was 31 times lower than that for Zn ions (1.86), suggesting that ZnO was less bioavailable than the ionic form in contaminated soil. In contrast, the BAFs for two types of AgNPs coated with polyvinylpyrrolidone (0.12) or citrate (0.11) were comparable to those of ionic Ag (0.17). The sequential extraction of metals from the soil suggests that the chemically mobile fractions in the Zn ion treatment were higher(35%) than those (<20%) in the Ag ion treatment, which was consistent with the greater BAFs in the former than the latter. However, the chemical mobility in the ZnO treatments did not predict bioavailability. The efflux rates of Ag (3.2-3.8% d-1) in the worms were 2-3×those(1.2-1.7% d-1) for Zn.

Carbon Nanosphere Composite Ultrafiltration Membranes with Anti-Biofouling Properties and More Porous Structures for Wastewater Treatment Using MBRs (분리막 생물반응기를 활용한 폐수처리를 위한 생물오염방지 특성 및 다공성 구조를 가진 탄소나노구체 복합 한외여과막)

  • Jaewoo Lee
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.38-49
    • /
    • 2024
  • Wastewater treatment using membrane bioreactors has been extensively used to alleviate water shortage and pollution by improving the quality of the treated water discharged into the environment. However, membrane biofouling persistently holds back an MBR process by reducing the process efficiency. Herein, we synthesized carbon nanospheres (CNSs) with many hydrophilic oxygen groups and utilized them as an additive to prepare high-performance ultrafiltration (UF) membranes with hydrophilicity and porous pore structure. CNSs were found to form crescent-shaped pores on the membrane surface, increasing the mean surface pore size by about 40% without causing significant defects larger than bubble points, as the CNS content increased by 4.6 wt%. In addition, the porous pore structure of CNS composite membranes was also attributable to the CNS's isotropic morphologies and relatively low particle number density because the aforementioned properties contributed to preventing the polymer solution viscosity from soaring with the loading of CNS. However, too porous structure compromised the mechanical properties, such that CNS2.3 was the best from a comprehensive consideration including the pore structure and mechanical properties. As a result, CNS2.3 showed not only 2 times higher water permeability than CNS0 but also 5 times longer operation duration until membrane cleaning was required.

Synthesis of Ultrasound Contrast Agent: Characteristics and Size Distribution Analysis (초음파 조영제의 합성 및 합성된 초음파 조영제의 특성 분석)

  • Lee, Hak Jong;Yoon, Tae Jong;Yoon, Young Il
    • Ultrasonography
    • /
    • v.32 no.1
    • /
    • pp.59-65
    • /
    • 2013
  • Purpose: The purpose of this study is to establish the methodology regarding synthesis of ultrasound contrast agent imaging, and to evaluate the characteristics of the synthesized ultrasound contrast agents, including size or degradation interval and image quality. Materials and Methods: The ultrasound contrast agent, composed of liposome and SF6, was synthesized from the mixture solution of $21{\mu}mol$ DPPC (1, 2-Dihexadecanoyl-sn-glycero-3-phosphocholine, $C_{40}H_{80}NO_8P$), $9{\mu}mol$ cholesterol, $1.9{\mu}mol$ of DCP (Dihexadecylphosphate, $[CH_3(CH_2)_{15}O]_2P(O)OH$), and chloroform. After evaporation in a warm water bath and drying during a period of 12-24 hours, the contrast agent was synthesized by the sonication process by addition of buffer and SF6 gas. The size of the contrast agent was controlled by use of either extruder or sonication methods. After synthesis of contrast agents, analysis of the size distribution of the bubbles was performed using dynamic light scattering measurement methods. The degradation curve was also evaluated by changes in the number of contrast agents via light microscopy immediate, 12 hours, 24 hours, 36 hours, 48 hours, 60 hours, 72 hours, and 84 hours after synthesis. For evaluation of the role as an US contrast agent, the echogenicity of the synthesized microbubble was compared with commercially available microbubbles (SonoVue, Bracco, Milan, Italy) using a clinical ultrasound machine and phantom. Results: The contrast agents were synthesized successfully using an evaporation-drying-sonication method. The majority of bubbles showed a mean size of 154.2 nanometers, and they showed marked degradation 24 hours after synthesis. ANOVA test revealed a significant difference among SonoVue, synthesized contrast agent, and saline (p < 0.001). Although no significant difference was observed between SonoVue and the synthesized contrast agent, difference in echogenicity was observed between synthesized contrast agent and saline (p < 0.01). Conclusion: We could synthesize ultrasound contrast agents using an evaporation-drying-sonication method. On the basis of these results, many prospective types of research, such as anticancer drug delivery, gene delivery, including siRNA or microRNA, targeted molecular imaging, and targeted therapy can be performed.

Preparation of $WO_3/TiO_2$ and $V_2O_5/TiO_2$ powders and their catalytic performances in the SCR of $NO_x$ ($WO_3/TiO_2$$V_2O_5/TiO_2$ 분말의 합성 및 $NO_x$ 제거 SCR특성)

  • Lee, Tae-Suk;Lee, In-Gyu;Lee, Byeong-Woo;Shin, Dong-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.216-221
    • /
    • 2006
  • An investigation of the influence of $WO_3$ and $V_2O_5$ catalysts on the microstructure, phase formation and selective catalytic reduction (SCR) efficiency of the synthesized SCR powders has been carried out. A commercial anatase-$TiO_2$ was used as the catalysts support. For $WO_3(10wt%)/TiO_2$, the W loading to the $TiO_2$ support led to the lower in anatase to rutile transition temperature from $1200^{\circ}C$ of $TiO_2$ support to ${\sim}900^{\circ}C$. The transition temperature was also lowered to below $650^{\circ}C$ in the $V_2O_5$(5 and 10 wt%) added composition. The $WO_3(10wt%)/TiO_2$ SCR powder obtained at $450^{\circ}C$ showed near 100% of $NO_x$ conversion efficiency at $350{\sim}400^{\circ}C$ and for the powder prepared at $650^{\circ}C$ the same efficiency was achieved in wider temperature range $300{\sim}400^{\circ}C$. The highest $NO_x$ conversion efficiency of 100% was obtained in the $V_2O_5(5wt%)/TiO_2$ SCR composition calcined at $650^{\circ}C$ in the relatively wider temperature range $250{\sim}350^{\circ}C$, while the catalytic efficiency considerably decreased for the $V_2O_5(10wt%)/TiO_2$. The lowered conversion efficiency of $NO_x$ observed in the $V_2O_5(10wt%)/TiO_2$ composition calcined at $650^{\circ}C$ was considered to be correlated with the lowered surface area resulting from the increased crystallite growth by highly reactive vanadium loading.