• Title/Summary/Keyword: Nano/Microsatellite

Search Result 5, Processing Time 0.024 seconds

ANALYSIS OF THE HAUSAT-2 ATTITUDE CONTROL (HAUSAT-2 자세제어 성능 해석)

  • Lee Byung-Hoon;Kim Soo-Jung;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2005.04a
    • /
    • pp.133-137
    • /
    • 2005
  • This paper describes the design and performance verification of a pitch momentum bias control system being built by students at the Space System Research Laboratory(SSRL). HAUSAT-2 ADCS(Attitude Determination and Control of Subsystem) op-elation mode is divided into two parts, initial mode and on-orbit mode. This paper describes design of the HAUSAT-2 performance of attitude control results using pitch momentum bias control method in initial mode and on-orbit mode and momentum dumping method.

  • PDF

FLIGHT SOFTWARE DEVELOPMENT FOR HAUSAT-2 ON-BOARD COMPUTER (HAUSAT-2 비행소프트웨어 개발)

  • Shim Chang-Hwan;Ryu Jung-Hwan;Choi Young-Hoon;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2006.04a
    • /
    • pp.117-120
    • /
    • 2006
  • HAUSAT-2 flight software was developed by first analyzing the satellite requirements, and incorporating the results into the software. Coding and compiling is done after the software is completed, then individual and integrated tests are performed in order to verify the flight software algorithm. Currently, HAUSAT-2 flight software integrated test has been performed and the test result is serving as a basis for code modification nd additional developments. This paper describes the architecture, development process, and development environment of HAUSAT-2 flight software.

  • PDF

RAPID INITIAL DETUMBLING STRATEGY FOR MICOR/NANOSATELLITE WITH PITCH BIAS MOMENTUM SYSTEM (피치 바이어스 모멘텀 방식 초소형 위성의 초기 자세 획득 방안 연구)

  • Lee Byung-Hoon;Choi Jung-Won;Yun Mi-Yeon;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2006.04a
    • /
    • pp.121-124
    • /
    • 2006
  • B-dot logic is generally used for controlling the initial tip-off rate. However, it has the disadvantage of taking a relatively long time to control the initial tip-off rate. To solve this problem, this paper suggests a new detumbling control method to be able to adapt to micro/nanosatellite with the pitch bias momentum system. Proposed detumbling method was able to control the angular rate within 20 minutes which is a significant reduction compared to conventional methods.

  • PDF

DEVELOPMENT AND PERFORMANCE VERIFICATION OF NANOSATELLITE HAUSAT-2 COMMUNICATION SUBSYSTEM (나노위성 HAUSAT-2 통신 서브시스템 개발 및 성능검증)

  • Yi Shim-Ho;Moon Byoung-Young;Na Hee-Seung;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2006.04a
    • /
    • pp.125-128
    • /
    • 2006
  • Communication Subsystem of HAUSAT-2 which is 25kg class nanosatellite is designed, manufactured and tested for its performance verification at the Space System Research Laboratory (SSRL). HAUSAT-2 Communication Subsystem provides communication link for commands receiving, mission and state of health data transmission with high reliability. This paper describes design, manufacturing, test results of Engineering Model of HAUSAT-2.

  • PDF

DEVELOPMENT OF THE HAUSAT-2 PAYLOAD OF ANIMAL TRACKING SYSTEM (HAUSAT-2 소형 위성 동물 추적 시스템 탑재체 개발)

  • Lee Jeong-Nam;Lee Byung-Hoon;Moon Byung-Young;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2006.04a
    • /
    • pp.129-132
    • /
    • 2006
  • Animal Tracking System consists of Animal Tracking System Receiver on the Satellite segment, Animal Tracking Terminal and Ground Station for data analysis on the Ground segment. This paper describes operation concept and hardware design for Animal Tracking System which is the payload of HAUSAT-2 being developed by the Space System Research Laboratory (SSRL). Algorithms for determination of animal position and data processing are also referred to.

  • PDF