• Title/Summary/Keyword: Named Entity

Search Result 221, Processing Time 0.04 seconds

Constructing a Metadata DB to Facilitate Retrieval of Faculty Syllabi on the Internet (인터넷 대학강의안의 검색을 위한 Metadata DB 구축)

  • 오삼균
    • Journal of the Korean Society for information Management
    • /
    • v.16 no.2
    • /
    • pp.149-164
    • /
    • 1999
  • The purpose of this paper is to introduce and discuss a newly-constructed metadata database system that facilitates the retrieval of faculty syllabi available on the Internet. This gateway system aims to provide users with one-stop access to syllabi posted by the faculty of the institutes of post-secondary education from all around the world. Several elements of the Dublin Core (DC) and other supplementary elements were used for cataloging the syllabi. The conceptual schema of all the selected elements of the syllabi was developed following the entity-relationship model. The metadata of the syllabi was then stored in a relational database system. Various searching and browsing interfaces were implemented to facilitate effective retrieval. The prototype, named as Gateway to Faculty Syllabi (GFS), is available at http:/Ais.skku.ac.kr/gfs/.

  • PDF

Character-Aware Neural Networks with Multi-Head Attention Mechanism for Multilingual Named Entity Recognition (Multi-Head Attention 방법을 적용한 문자 기반의 다국어 개체명 인식)

  • Cheon, Min-Ah;Kim, Chang-Hyun;Park, Ho-Min;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.167-171
    • /
    • 2018
  • 개체명 인식은 문서에서 인명, 지명, 기관명 등의 고유한 의미를 나타내는 단위인 개체명을 추출하고, 추출된 개체명의 범주를 결정하는 작업이다. 최근 개체명 인식과 관련된 연구는 입력 데이터의 앞, 뒤를 고려하기 위한 Bi-RNNs와 출력 데이터 간의 전이 확률을 이용한 CRFs를 결합한 방식을 기반으로 다양한 변형의 심층학습 방법론이 제안되고 있다. 그러나 대부분의 연구는 입력 단위를 단어나 형태소로 사용하고 있으며, 성능 향상을 위해 띄어쓰기 정보, 개체명 사전 자질, 품사 분포 정보 등 다양한 정보를 필요로 한다는 어려움이 있다. 본 논문은 기본적인 학습 말뭉치에서 얻을 수 있는 문자 기반의 입력 정보와 Multi-Head Attention을 추가한 Bi-GRU/CRFs을 이용한 다국어 개체명 인식 방법을 제안한다. 한국어, 일본어, 중국어, 영어에 제안 모델을 적용한 결과 한국어와 일본어에서는 우수한 성능(한국어 $F_1$ 84.84%, 일본어 $F_1$ 89.56%)을 보였다. 영어에서는 $F_1$ 80.83%의 성능을 보였으며, 중국어는 $F_1$ 21.05%로 가장 낮은 성능을 보였다.

  • PDF

Ontology Knowledge based Information Retrieval for User Query Interpretation (사용자 질의 의미 해석을 위한 온톨로지 지식 기반 검색)

  • Kim, Nanju;Pyo, Hyejin;Jeong, Hoon;Choi, Euiin
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.245-252
    • /
    • 2014
  • Semantic search promises to provide more accurate result than present-day keyword matching-based search by using the knowledge base represented logically. But, the ordinary users don't know well the complex formal query language and schema of the knowledge base. So, the system should interpret the meaning of user's keywords. In this paper, we describe a user query interpretation system for the semantic retrieval of multimedia contents. Our system is ontological knowledge base-driven in the sense that the interpretation process is integrated into a unified structure around a knowledge base, which is built on domain ontologies.

Design and Implementation of Interactive Editing System for SGML DTD Composition (SGML 문서형 정의부 작성을 위한 대화형 편집 시스템 설계 및 구현)

  • 김창수;정회경
    • The Journal of Information Technology
    • /
    • v.2 no.2
    • /
    • pp.35-49
    • /
    • 1999
  • This papar describes an design and implementation of a rule builder, named SGML DTD(Document Type Definition) Editor conforming to ISO 8879(SGML : Standard Generalized Markup Language). SGML DTD define types of logical structure in documents and it is very hard to managing, operating with general common text editors because of it's complex structures. Therefore, We studied DTD automatic editor and production system, prototype system, direct operations on graphic trees in the environment of windows. It's easy to handle with general users. So, We analyzed the structures of document, and studied about SGML documents operation models. And also described logical structures by tree on Windows.

  • PDF

A Study on Modeling of Bibliographic Framework Based on FRBR for Television Program Materials (방송영상자료의 FRBR기반 서지구조모형에 관한 연구)

  • Chung, Jin-Gyoo
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.41 no.1
    • /
    • pp.185-214
    • /
    • 2007
  • This study intends to design the bibliographic framework based on IFLA-FRBR model for television program materials and to evaluate this in terms of effectiveness of retrieval and usability of the system. The FRBR model supplies mote suitable bibliographic framework of audio-visual material which has a sufficient hierarchical relations and relative bibliographical records. The followings are research methods designed by this study; (1) The experimental metadata system named it FbCS based on FRBR was developed by using the entity-related database and composed of multi-layed and hierarchy. FbCS is developed through benchmarking of a case study for iMMix model in Netherlands based on FRBR. (2) To evaluate effectiveness of retrieval and usability of FbCS, this study made a experiment and survey by user groups of professionals.

Implementation of a Dialogue Interface System Using Pattern Matching and Statistical Modeling (패턴 매칭과 통계 모델링을 이용한 대화 인터페이스 시스템의 구현)

  • Kim, Hark-Soo
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.3
    • /
    • pp.67-73
    • /
    • 2007
  • In this paper, we review essential constituents of a dialogue interface system and propose practical methods to implement the each constituent. The implemented system consists of a discourse manager, an intention analyzer, a named entity recognizer, a SQL query generator, and a response generator. In the progress of implementation, the intention analyzer uses a maximum entropy model based on statistics because the domain dependency of the intention analyzer is comparatively low. The others use a simple pattern matching method because they needs high domain portability. In the experiments in a schedule arrangement domain, the implemented system showed the precision of 88.1% in intention analysis and the success rate of 83,4% in SQL query generation.

  • PDF

Extracting English-Korean Named-Entity Word-pairs using Wikipedia (위키피디아를 이용한 영-한 개체명 대역어 쌍 구축)

  • Kim, Eun-Kyung;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.101-105
    • /
    • 2009
  • 본 논문은 공통적으로 이용할 수 있는 웹 환경에서의 한국어 정보로 획득할 수 있는 정보의 양이 영어권 정보의 양보다 상대적으로 적다는 것을 토대로, 웹정보 이용의 불균형을 해소하고자 하는 목적으로부터 출발하였다. 최근에는 지식 정보의 세계화, 국제화에 따라 동일한 정보를 각국 언어로 제공하고자하는 연구가 꾸준히 증가하고 있다. 온라인 백과사전인 위키피디아 역시 현재 다국어로 제공이 되고 있지만 한국어로 작성된 문서는 영어로 작성된 문서의 5% 미만인 것으로 조사되었다. 본 논문에서는 위키피디아 내에서 제공하는 다국어간의 링크 정보와 인포박스 데이터를 활용하여 위키피디아 문서 내에서 개체명을 인식하고, 자동으로 개체명의 영-한 대역어 쌍을 추출하는 것을 목표로 한다. 개체명은 일반 사전에 등재 되지 않은 경우가 많기 때문에, 기계번역에서 사전 데이터 등을 활용하여 개체명을 처리하는 것은 쉽지 않으며 일반적으로 음차표기 방식을 함께 사용하여 해결하고 있다. 본 논문을 통해 위키피디아 데이터를 활용해 만들어진 영-한 개체명 대역어 사전을 구축하기 위해 사용된 기술은 추후 위키피디아 문서를 기계번역하는데 있어 동일한 방법으로 사용이 가능하며, 구축된 사전 데이터는 추후 영-한 자동 음차표기 연구의 사전 데이터로도 활용이 가능하다.

  • PDF

Performance Comparison of Recurrent Neural Networks and Conditional Random Fields in Biomedical Named Entity Recognition (의생명 분야의 개체명 인식에서 순환형 신경망과 조건적 임의 필드의 성능 비교)

  • Jo, Byeong-Cheol;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.321-323
    • /
    • 2016
  • 최근 연구에서 기계학습 중 지도학습 방법으로 개체명 인식을 하고 있다. 그러나 지도 학습 방법은 데이터를 만드는 비용과 시간이 많이 필요로 한다. 본 연구에서는 주석 된 말뭉치를 사용하여 지도 학습 방법을 사용 한다. 의생명 개체명 인식은 Protein, RNA, DNA, Cell type, Cell line 등을 포함한 텍스트 처리에 중요한 기초 작업입니다. 그리고 의생명 지식 검색에서 가장 기본과 핵심 작업 중 하나이다. 본 연구에서는 순환형 신경망과 워드 임베딩을 자질로 사용한 조건적 임의 필드에 대한 성능을 비교한다. 조건적 임의 필드에 N_Gram만을 자질로 사용한 것을 기준점으로 설정 하였고, 기준점의 결과는 70.09% F1 Score이다. RNN의 jordan type은 60.75% F1 Score, elman type은 58.80% F1 Score의 성능을 보여준다. 조건적 임의 필드에 CCA, GLOVE, WORD2VEC을 사용 한 결과는 각각 72.73% F1 Score, 72.74% F1 Score, 72.82% F1 Score의 성능을 얻을 수 있다.

  • PDF

Automatic Generation of Named Entity Tagged Corpus using Web Search Engine (웹을 이용한 개체명 부착 말뭉치의 자동생성과 정제)

  • An, Joo-Hui;Lee, Seung-Woo;Lee, Gary Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.85-91
    • /
    • 2002
  • 최근 정보 추출, 질의응답 시스템 등의 고정밀 자연어처리 어플리케이션이 부각됨에 따라 개체명 인식의 중요성이 더욱 커지고 있다. 이러한 개체명 인식을 위한 학습에는 대용량의 어휘자료를 필요로 하기 때문에 충분한 학습 데이터, 즉 개체명 태그가 부착된 충분한 코퍼스가 제공되지 못하는 경우 자료희귀문제(data sparseness problem)로 인하여 목적한 효과를 내지 못하는 경우가 않다. 그러나 태그가 부착된 코퍼스를 생성하는 일은 시간과 인력이 많이 드는 힘든 작업이다. 최근 인터넷의 발전으로 웹 데이터는 그 양이 매우 많으며, 습득 또한 웹 검색 엔진을 사용해서 자동으로 모음으로써 다량의 말뭉치를 모으는 것이 매우 용이하다. 따라서 최근에는 웹을 무한한 언어자원으로 보고 웹에서 필요한 언어자원을 자동으로 뽑는 연구가 활발히 진행되고 있다. 본 연구는 이러한 연구의 첫 시도로 웹으로부터 다량의 원시(raw) 코퍼스를 얻어 개체명 태깅 학습을 위한 태그 부착 코퍼스를 자동으로 생성하고 이렇게 생성된 말뭉치를 개체면 태깅 학습에 적용하는 비교 실험을 통해 수집된 말뭉치의 유효성을 검증하고자 한다. 향후에는 자동으로 웹으로부터 개체 명 태깅 규칙과 패턴을 뽑아내어 실제 개체명 태거를 빨리 개발하여 유용하게 사용할 수 있다.

  • PDF

Improving Quality of Training Corpus for Named Entity Recognition Using Heuristic Rules (휴리스틱을 이용한 개체명 인식 학습 말뭉치 품질 향상)

  • Lee, Seong-Hee;Song, Yeong-Kil;Kim, Hark-Soo
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.202-205
    • /
    • 2015
  • 개체명 인식은 문서에서 개체명을 추출하고 추출된 개체명의 범주를 결정하는 작업이다. 기존의 지도 학습 기법을 이용한 개체명 인식을 위해서는 개체명 범주가 수동으로 부착된 대용량의 학습 말뭉치가 필요하며, 대용량의 말뭉치 구축은 인력과 시간이 많이 들어가는 일이다. 본 논문에서는 학습 말뭉치 구축비용을 최소화하고 초기 학습 말뭉치의 노이즈를 제거하여 말뭉치의 품질을 향상시키는 방법을 제안한다. 제안 방법은 반자동 개체명 사전 구축 방법으로 구축한 개체명 사전과 원거리 감독법을 사용하여 초기 개체명 범주 부착 말뭉치를 구축한다. 그리고 휴리스틱을 이용하여 초기 말뭉치의 노이즈를 제거하여 학습 말뭉치의 품질을 향상시키고 개체명 인식의 성능을 향상시킨다. 실험 결과 휴리스틱 적용을 통해 개체명 인식의 F1-점수를 67.36%에서 73.17%로 향상시켰다.

  • PDF