• Title/Summary/Keyword: Nakdong River watershed

Search Result 200, Processing Time 0.028 seconds

Nonpoint Removal Contribution Ratio Analysis of Nonpoint Source Pollutants Loads from Sewage Treatment Area in Watershed of Nakdong River (낙동강 유역 내 하수처리구역의 비점오염원 부하량에 대한 비점저감 기여율 분석)

  • Jang, Jong Kyung;Kim, Mi Eun;Kim, Jae Moon;Jang, Young Su;Shin, Hyun Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.445-445
    • /
    • 2015
  • 비점오염의 특성에 대해 지속적으로 연구 중이지만 수문특성과 연관성이 크다 보니 그 일관성에 대해 확실한 기법이 개발되지 않았다. 기법 개발과 효과적인 오염원 관리를 위해 SWMM 등의 모형을 활용하고 있지만 투입된 노력과 시간에 비해 그 효율성이 매우 적은 편이다. 이런 부분을 보완하고자 본 논문에서는 기존의 비점오염량 산정방법이 아니라 낙동강유역의 도시화 특성 및 수문/기상자료와 처리장 운영자료를 활용한 차별화된 원단위법을 통해 비점 배출 부하량 산정방법을 제시하려고 한다. 배수구역 내 관거 시스템을 합류식으로 가정하였고 배수구역별 비점 발생형태는 하수처리장의 강우 유입량, 하수처리장의 우회유량(Bypass 유량), 하수처리구역의 CSO 유량 3가지로 구분 지었다. 유입 방류자료와 강우자료를 활용하여 임계강우량을 3mm로 설정하여 3mm이상일 경우에 우회유량이 발생한다고 가정하였고 우회유량 발생시 오염부하량 산정은 건기평균유량에 유량변동부하율을 곱하여 시간최대유량으로 전환한 후 강우 지속기간 동안만 우회유량이 발생하는 것으로 가정하였다. CSO 유량은 처리구역/배수구역 면적비에 따라 3개의 그룹으로 구분한 뒤 검증된 SWMM-온천천 모형의 각 소유역별 불투수면적비와 비교하여 유사한 소유역을 각 그룹의 대표유역으로 선정하였다. 선정된 소유역의 CSO 유량과 수문현상의 비선형적인 관계를 고려할 수 있는 신경망 기법을 적용하여 강우특성에 따른 CSO 오염부하량 산정을 실시하였다. 산정결과를 바탕으로 각 하수처리장별 비점저감 기여율을 산정한 결과 대구북부 처리장에서 21.56%로 가장 높은 효율을 보여줬으며 거창가조 지점에서 0.11%로 가장 낮은 효율을 보여주는 것을 확인 할 수 있었다. 이러한 결과를 바탕으로 낙동강유역 내 위치한 하수처리장의 효율성에 대해 알 수 있으며 개선되어야 할 처리장들을 알 수 있었다. 또한 획일화된 방법이 아닌 차별화된 원단위법을 통한 오염부하량 산정은 앞으로의 연구방향에 있어서 좋은 사례가 될 것으로 사료된다.

  • PDF

Research on the Applicability of the Load Duration Curve to Evaluate the Achievement of Target Water Quality in the Unit Watershed for a TMDL (수질오염총량 단위유역의 목표수질 달성여부 평가를 위한 부하지속곡선 적용성 연구)

  • Hwang, Ha-Sun;Park, Bae-Kyung;Kim, Yong-Seok;Park, Ki-Jung;Cheon, SeUk;Lee, Sung-Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.885-895
    • /
    • 2011
  • The purpose of this study was evaluated on achievement of the Target water quality (TWQ) with Load Duration Curve (LDC) as well as materials collected through the implementation of Total Maximum Daily Load (TMDL), targeting 41 unit watersheds in the Nakdong River Basin in korea, and examines the adequacy of the LDC method to evaluate the TWQ by comparing methods through current regulations. It aims to provide basic materials for TMDL development in Korea. This determination resulted from the fact that the measured data placed on the LDC mean that they are beyond TWQ in a certain condition of water flow when actually measured load values were displayed in a form of LDC. In addition to water quality surveys, it is considered that information on the level of damage in a water body by water flow grade can be utilized as a basic material to identify compliance with the total admitted quantity, and establish rational plans to improve water quality. This information helps in the identification of the degree of damage in water quality according to water flow.

Quantitative evaluation of climate change and human activities on watershed runoff: focused on the Nakdong River basin (기후변화와 인간 활동이 하천 유출량에 미치는 영향에 대한 정량적 평가: 낙동강 유역을 중심으로)

  • Mi Ju Oh;Dongwook Kim;Hyun-Han Kwon;Tae-Woong Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.241-241
    • /
    • 2023
  • 최근 수십 년 동안 전 세계의 거의 모든 하천 유역은 기후변화와 인간 활동에 의해 직간접적으로 영향을 받았다. 특히, 유역 유출량은 기후변화와 인간 활동의 상호작용으로 수자원 분야에서 문제가 되고 있다. 기후와 인간 활동에 의해 변화하는 환경에서 수자원을 효율적으로 관리하기 위해서 유출량의 변화를 이해하는 것은 매우 중요하다. 따라서, 본 연구에서는 낙동강 유역의 22개 중권역을 대상으로 과거 관측자료 및 미래 기후변화 시나리오의 유출량, 강수량, 기온, 잠재 증발산량 및 실제 증발산량 자료를 이용하여 기후변화와 인간 활동이 유출량에 미치는 영향을 정량적으로 분석하였다. 과거 관측자료를 분석할 경우, 기초자료인 유출량의 경향성 및 유의성을 검증하기 위해 비모수적 방법인 Mann-Kendall 검증을 수행하였으며, Pettitt method를 이용하여 변화 지점을 결정하여 기준기간과 사후기간으로 구분하였다. 또한 Budyko 가설 기반 기후 탄력성 접근법을 이용하여 기후변화와 인간 활동이 하천 유출량에 미치는 영향을 정량적으로 분리하였다. 미래 RCP 시나리오 자료를 분석할 경우에도 기간을 나누고 기후 탄력성 접근법을 이용하여 유출량의 영향을 평가하였다. 분석 결과, 기후변화와 인간 활동의 상대적 기여도는 중권역 간에도 다양하다는 것을 확인할 수 있었다. 미래의 유출량을 분석한 결과, 대부분의 유역에서 기후변화의 기여도는 RCP 4.5일 때에 비해 RCP 8.5에서 더 크게 상승한 것으로 나타났다. 과거 기간(1966~2020)에 대하여 미래 기간 (2062~2099)에 대한 분석에서 중권역 중 금호강(#2012)은 RCP 4.5에서는 22.4%, RCP 8.5에서는 39.8%로 RCP 8.5가 큰 것으로 나타났다.

  • PDF

New records of two alien plants, Juncus torreyi (Juncaceae) and Egeria densa (Hydrocharitaceae) in Korea

  • Jongduk JUNG;Hye Ryun NA;Kyu Song LEE;Yeongmin CHOI;Woongrae CHO;Jin-Oh HYUN
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.1
    • /
    • pp.54-59
    • /
    • 2023
  • Naturalized populations of two alien plants were newly found, and we describe their morphological characteristics and habitats with photographs. One is a member of Juncaceae, Juncus torreyi Coville, and was newly found at a pool of a beach in Gangwon-do. This rush is native to North America and belongs to the sect. Ozophyllum (subgen. Juncus) according to certain morphological characteristics, such as its racemose inflorescence, the absence of floral bracteole, and unitubular leaves with perfect septa. J. torreyi is easily distinguishable from Korean rushes by its long rhizomes with swollen nodes and globular head with 25-100 flowers. Its introduction into Japan and Europe was reported, but the ecological risk associated with its over-dispersal is not known. The other alien plant is a submerged plant, Egeria densa Planch. (Hydrocharitaceae), which was found in streams in Gyeongsangbuk-do and ditches in the Busan-si area, both of which being in the watershed of the Nakdong River. Egeria densa is similar to Hydrilla verticillata (L.f.) Royle, which is native to Korea. However, it is distinguished from H. verticillata by its larger flowers and lack of overwintering organs. This alien plant is native to South America and was introduced for aquarium gardening and naturalized around the world. Egeria densa is treated as a malignant weed due to its asexual reproduction and rapid growth. Size changes and the number of populations of E. densa must be investigated.

Characteristics of Phytoplankton Succession Based on the Functional Group in the Enclosed Culture System (대형 배양장치에서 기능그룹에 기초한 식물플랑크톤 천이 특성)

  • Lee, Kyung-Lak;Noh, Seongyu;Lee, Jaeyoon;Yoon, Sungae;Lee, Jaehak;Shin, Yuna;Lee, Su-Woong;Rhew, Doughee;Lee, Jaekwan
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.441-451
    • /
    • 2017
  • The present study was conducted from August to December 2016 in a cylindrical water tank with a diameter of 1 m, a height of 4 m and a capacity of 3,000 L. The field water and sediment from the Nakdong River were also sampled for the experimental culture (field water+sediment) and control culture (field water), respectively. In this study, we aimed to investigate phytoplankton succession pattern using the phytoplankton functional group in the enclosed culture system. A total of 50 species in 27 genera including Chlorophyceae (30 species), Bacillariophyceae (11 species), Cyanophyceae (7 species), and Cryptophyceae (2 species) were identified in the experimental and control culture systems. A total of 19 phytoplankton functional groups (PFGs) were identified, and these groups include B, C, D, F, G, H1, J, K, Lo, M, MP, N, P, S1, $T_B$, $W_0$, X1, X2 and Y. In particular, $W_0$, J and M groups exhibited the marked succession in the experimental culture system with higher biovolumes compared to those of the control culture system, which may be related to the internal cycling of nutrients by sediment in the experimental culture system. The principal component analyses demonstrated that succession patterns in PFG were associated with the main environmental factors such as nutrients(N, P), water temperature and light intensity in two culture systems. In conclusion, the present study showed the potential applicability of the functional group for understanding the adaptation strategies and ecological traits of the phytoplankton succession in the water bodies of Korea.

SWAT model calibration/validation using SWAT-CUP I: analysis for uncertainties of objective functions (SWAT-CUP을 이용한 SWAT 모형 검·보정 I: 목적함수에 따른 불확실성 분석)

  • Yu, Jisoo;Noh, Joonwoo;Cho, Younghyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.1
    • /
    • pp.45-56
    • /
    • 2020
  • This study aims to quantify the uncertainty that can be induced by the objective function when calibrating SWAT parameters using SWAT-CUP. SWAT model was constructed to estimate runoff in Naesenong-cheon, which is the one of mid-watershed in Nakdong River basin, and then automatic calibration was performed using eight objective functions (R2, bR2, NS, MNS, KGE, PBIAS, RSR, and SSQR). The optimum parameter sets obtained from each objective function showed different ranges, and thus the corresponding hydrologic characteristics of simulated data were also derived differently. This is because each objective function is sensitive to specific hydrologic signatures and evaluates model performance in an unique way. In other words, one objective function might be sensitive to the residual of the extreme value, so that well produce the peak value, whereas ignores the average or low flow residuals. Therefore, the hydrological similarity between the simulated and measured values was evaluated in order to select the optimum objective function. The hydrologic signatures, which include not only the magnitude, but also the ratio of the inclining and declining time in hydrograph, were defined to consider the timing of the flow occurrence, the response of watershed, and the increasing and decreasing trend. The results of evaluation were quantified by scoring method, and hence the optimal objective functions for SWAT parameter calibration were determined as MNS (342.48) and SSQR (346.45) with the highest total scores.

Hydro-meteorological Effects on Water Quality Variability in Paldang Reservoir, Confluent Area of the South-Han River-North-Han River-Gyeongan Stream, Korea (남·북한강과 경안천 합류 수역 팔당호의 수질 변동성에 대한 기상·수문학적 영향)

  • Hwang, Soon-Jin;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Choi, Bong-Geun;Eum, Hyun Soo;Park, Myung-Hwan;Noh, Hye Ran;Sim, Yeon Bo;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.354-374
    • /
    • 2016
  • This study explored spatiotemporal variability of water quality in correspondence with hydrometeorological factors in the five stations of Paldang Reservoir located in the Han River during 4 years from May 2012 to December 2015. Variability of basic water quality factors were largely related with seasonal fluctuations of hydrology. Temperature stratification occurred in the deep dam station, and prolonged hypoxia was observed during the draught year. Nitrogen nutrients were increased with decreasing inflow in which changing pattern of $NH_4$ reversed to $NO_3$ by the effect of treated wastewater effluent. Phosphorus increase was manifest during the period of high inflow or severe drought. Chl-a variation was reversely related with both flow change and AGP(algal growth potential) variations. Our study demonstrated that water quality variability in Paldang Reservoir was largely attributed to both natural and operational changes of inflow and outflow (including water intake) based on major pollution source of the treated wastewater (total amount of $472{\times}10^3m^3d^{-1}$) entering to the water system from watershed. In the process of water quality variability, meteorological (e.g., flood, typhoon, abnormal rainfall, scorching heat of summer) and hydrological factors (inflow and discharge) were likely to work dynamically with nutrients pulse, dilution, absorption, concentration and sedimentation. We underline comprehensive limnological study related to hydro-meteorolology to understand short- and long-term water quality variability in river-type large reservoir and suggest the necessity of P-free wastewater treatment for the effective measure of reducing pollution level of Paldang drinking water resource.

Flood Risk Mapping with FLUMEN model Application (FLUMEN 모형을 적용한 홍수위험지도의 작성)

  • Cho, Wan Hee;Han, Kun Yeun;Ahn, Ki Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.169-177
    • /
    • 2010
  • Recently due to the typhoon and extreme rainfall induced by abnormal weather and climate change, the probability of severe damage to human life and property is rapidly increasing. Thus it is necessary to create adequate and reliable flood risk map in preparation for those natural disasters. The study area is Seo-gu in Daegu which is located near Geumho river, one of the tributaries of Nakdong river. Inundation depth and velocity at each time were calculated by applying FLUMEN model to the target area of interest, Seo-gu in Daegu. And the research of creating flood risk map was conducted according to the Downstream Hazard Classification Guidelines of USBR. The 2-dimensional inundation analysis for channels and protected lowland with FLUMEN model was carried out with the basic assumption that there's no levee failure against 100 year precipatation and inflow comes only through the overflowing to the protected lowland. The occurrence of overflowing was identified at the levee of Bisan-dong located in Geumho watershed. The level of risk was displayed for house/building residents, drivers and pedestrians using information about depth and velocity of each node computed from the inundation analysis. Once inundation depth map and flood risk map for each region is created with this research method, emergency action guidelines for residents can be systemized and it would be very useful in establishing specified emergency evacuation plans in case of levee failure and overflowing resulting from a flood.

Identifying Degradation Causes of Endangered Freshwater Fish, Microphysogobio rapidus Using Habitat-Environmental Characteristics (멸종위기 야생생물 I급 여울마자 서식지 환경 특성 파악을 통한 훼손 원인 분석)

  • Ju-Duk Yoon;Keun-Sik Kim;Chang-Deuk Park;Dong-Won Kang;Heung-Heon Lee;Chi-Hong Lim;Nam-Shin Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.3
    • /
    • pp.229-241
    • /
    • 2023
  • Microphysogobio rapidus is designated as endangered species class I by Ministry of Environment, and its distribution and population have been gradually declining, and it is now limited to the Nam River and some tributary streams of the Nakdong River Watershed. For the restoration of this highly endangered species, it is important to identify the causes of the decline and establish appropriate restoration plans. However, due to lack of basic data and ecological research, most steps are stagnant. Therefore, in this study, we identified the differences in the physical, biological, and sociological habitats between current and past distributed sites through field surveys and literature reviews. As a result of the field survey, there were differences in conductivity between the current and past distributed sites, and fish communities were also showed differences. The literature data also showed that the physico-chemical values of the past distributed sites were generally unfavorable, which generated negative consequences on biological factors. In particular, the effects of urbanization were found to be a major factor affecting the habitat of M. rapidus. Habitat stabilization is crucial for the recovery of this endangered species. However, in the past distributed sites, disturbances such as stream development and weir construction have altered streams physico-chemically and result in changes of M. rapidus. Therefore, a comprehensive plan that considers both stream connectivity and water quality is needed to manage and restore the habitat of M. rapidus.

Fish Community Structure Analysis and Ecological Health Assessments in the Headwater Watershed of Nakdong River (낙동강 상류 수계의 어류 군집 구조 분석 및 생태건강도 평가)

  • Lee, Jae-Hoon;Hong, Young-Pyo;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.403-411
    • /
    • 2007
  • The purpose of the study was to evaluate fish community, based on conventional at Shannon-Weaver diversity index (H'), and ecological health, based on the Index of Biological Integrity (IBI) using fish assemblage in the eight sites of Nakdong River during June${\sim}$August 1999. Total number of species sampled was 19 species, and two sensitive species of Zacco temminckii (51%) and Rhynchocypris oxycephalus (28%) dominated the fish community. Also, trophic guild analyses showed that insectivore was 87% of the total and omnivore was rare, indicating that the ecological health is well maintained in the system. The pattern of spatial variation in the diversity index(H') was very similar to patterns of the species number and individual number, whereas the pattern of H' was not matched with the tolerance and trophic guild data. The diversity index (H') showed highest (1.56) in Site 6 where the proportion of sensitive species and tolerant species was minimum and maximum, respectively, and where the insectivore and omnivore were minimum and maximum. In other words, the diversity index was not matched at all with the trophic and tolerant guilds, indicating that the conventional index did not reflect the ecological characteristics of fish community in the system. In the mean time, the ecological health (IBI) averaged 33.5 (n=8), indicating "good${\sim}$fair condition" and the IBI values matched with trophic and tolerance guilds. Maximum IBI occurred in Site 2 where the sensitive and msectivore species were nearly maximum, and the tolerant and omnivore species were almost minima, indicating that IBI values were closely associated with the ecological functions and health conditions. Overall data suggest that the conventional diversity index may not effective for a evaluation of fish community, and that in contrast the IBI approach may be a useful tool for diagnosis of stream community.