• Title/Summary/Keyword: Nakdong Basin

Search Result 505, Processing Time 0.037 seconds

Research on the Development Management Basin and Goal for 3th T.W.Q on the Boundary between Metropolitan Cities/Dos Specified in Nakdong River Basin (낙동강수계 3단계 광역시·도 경계지점 목표수질 설정을 위한 관리권역 및 관리목표 설정 방법 연구)

  • Hwang, Ha Sun;Park, Ji Hyung;Kim, Yong Seok;Rhew, Doug Hee;Choi, Yu Jin;Lee, Sung Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.569-575
    • /
    • 2015
  • The current Total Pollution Load Control (TPLC) sets the Target Water Quality (TWQ) by utilizing the delivery ratio, unit loads, and water quality modeling, it also allocates the watershed's permitted discharge load. Currently, common target pollutants of every unit watershed in TPLC are BOD and T-P. This study has reviewed the 1th and 2th of TWQ setting process for the Nakdong River 3th TWQ setting in Total Pollution Load Control (TPLC). As a result of review, 1th and 2th were divided into one management basin (mulgeum) for setting management goals. However, 3th was divided into six management basins (mulgeum, gnagjeong, geumho river, nam river, miryang river, end of nakdong river). The principle of management goal setting were to achieve the objective criteria of Medium Areas for the linkage of the water environment management policy. And Anti-Degredation (principle of preventing deterioration) were applied to the 3th TWQ. Also, additional indicators were considered in accordance with the reduction scenarios for the final management goals.

Regional Drought Frequency Analysis of Monthly Precipitation with L-Moments Method in Nakdong River Basin (L-Moments법에 의한 낙동강유역 월강우량의 지역가뭄빈도해석)

  • 김성원
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.431-441
    • /
    • 1999
  • In this study, the regional frequency analysis is used to determine each subbasin drought frequency with reliable monthly precipitation and the L-Moments method which is almost unbiased and has very nearly a normal distribution is used for the parameter estimation of monthly precipitation time series in Nakdong river basin. As the result of this study, the duration of '93-'94 is most severe drought year than any other water year and the drought frequency is established as compared the regional frequency analysis result of cumulative precipitation of 12th duration months in each subbasin with that of 12th duration months in the major drought duration. The Linear regression equation is induced according to linear regression analysis of drought frequency between Nakdong total basin and each subbasin of the same drought duration. Therefore, as the foundation of this study, it can be applied proposed method and procedure of this study to the water budget analysis considering safety standards for the design of impounding facilities large-scale river basin and for this purpose, above all, it is considered that expansion of reliable preciptation data is needed in watershed rainfall station.

  • PDF

Optimum Water Allocation System Model in Keumho River Basin with Mathematical Programming Techniques (수리계획을 이용한 금호강유역의 최적 물배분 시스템모델)

  • 안승섭;이증석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.74-85
    • /
    • 1997
  • This study aims at the development of a mathematical approach for the optimal water allocation in the river basin where available water is not in sufficient. Its optimal allocation model is determined from the comparison and analysis of mathematical programming techniques such as transportation programming and dynamic programming models at its optimal allocation models. The water allocation system used in this study is designed to be the optimal water allocation which can satisfy the water deficit in each district through inter-basin water transfer between Kumho river basin which is a tributary catchment of Nakdong river basin, and the adjacent Hyungsan river basin, Milyang river basin and Nakdong upstream river basin. A general rule of water allocation is obtained for each district in the basins as the result of analysis of the optimal water allocation in the water allocation system. Also a comparison of the developed models proves that there is no big difference between the models Therefore transportation programming model indicates most adequate to the complex water allocation system in terms of its characteristics It can be seen, however, that dynamic programming model shows water allocation effect which produces greater net benefit more or less.

  • PDF

Three-dimensional numerical modeling of sediment-induced density currents in a sedimentation basin (3차원 수치모의를 통한 침사지에서의 부유사 밀도류 해석)

  • An, Sang Do;Kim, Gi-Ho;Park, Won Cheol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.383-394
    • /
    • 2013
  • A sedimentation basin is used to remove suspended sediments which can cause abrasive and erosive wear on hydraulic turbines of hydropower plants. This sediment erosion not only decreases efficiency of the turbine but also increases maintenance costs. In this study, the three-dimensional numerical simulations were carried out on the overseas hydropower project. The simulations of flow and suspended sediment concentration were obtained using FLOW-3D computational fluid dynamics code. The simulations provide removal efficiency of a sedimentation basin based on particle sizes. The influence of baffles on the flow field and the removal efficiency of suspended sediments in the sedimentation basin has been investigated. This paper also provides the numerical simulations for sediment-induced density currents that may occur in the sedimentation basin. The simulation results indicate that the formation of density currents decreases the removal efficiency. When a baffle is installed in the sedimentation basin, the baffle provides intensive settling zones resulting in increasing the sediments settling. Thus the enhanced removal efficiency can be achieved by installing the baffle inside the sedimentation basin.

Impact of Climate Change on Runoff Analysis in the Geum River Basin (금강 유역에서의 기후변화에 대한 유출 영향 분석)

  • Ahn, Jung-Min;Jung, Kang-Young;Kim, Gyeonghoon;Kwon, Heongak;Yang, Duk-Seok;Shin, Dongseok
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.549-561
    • /
    • 2017
  • Recently IPCC (International Panel on Climate Change, 2007) pointed out that global warming is a certain ongoing process on the earth, due to which water resources management is becoming one of the most difficult tasks with the frequent occurrences of extreme floods and droughts. In this study we made runoff predictions for several control points in the Geum River by using the watershed runoff model, SSARR (Streamflow Synthesis and Reservoir Regulation Model), with daily RCP 4.5 and RCP 8.5 scenarios for 100 year from 1st Jan 2006 to 31st Dec 2100 at the resolution of 1 km given by Climate Change Information Center. As a result of, the Geum River Basin is predicted to be a constant flow increases, and it showed a variation in the water circulation system. Thus, it was found that the different seasonality occurred.

An Analysis of the Effect of Climate Change on Flow in Nakdong River Basin Using Watershed-Based Model (유역기반 모형을 이용한 기후변화에 따른 낙동강 유역의 하천유량 영향 분석)

  • Shon, Tae-Seok;Lee, Sang-Do;Kim, Sang-Dan;Shin, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.865-881
    • /
    • 2010
  • To evaluate influence of the future climate change on water environment, it is necessary to use a rainfall-runoff model, or a basin model allowing us to simultaneously simulate water quality factors such as sediment and nutrient material. Thus, SWAT is selected as a watershed-based model and Nakdong river basin is chosen as a target basin for this study. To apply climate change scenarios as input data to SWAT, Australian model (CSIRO: Mk3.0, CSMK) and Canadian models (CCCma: CGCM3-T47, CT47) of GCMs are used. Each GCMs which have A2, B1, and A1B scenarios effectively represent the climate characteristics of the Korean peninsula. For detecting climate change in Nakdong river basin, precipitation and temperature, increasing rate of these were analyzed in each scenarios. By simulation results, flow and increasing rate of these were analyzed at particular points which are important in the object basin. Flow and variation of flow in the scenarios for present and future climate changes were compared and analyzed by years, seasons, divided into mid terms. In most of the points temperature and flow rate are increased, because climate change is expected to have a significant effect on rising water temperature and flow rate of river and lake, further on the basis of this study result should set enhancing up water control project of hydraulic structures caused by increasing outer discharge of the Nakdong River Basin due to climate change.

The Analysis of Water Supply Capacity using Reliability Criteria - for the Nakdong River Basin - (신뢰성 기준을 적용한 용수공급능력의 해석 - 낙동강유역을 중심으로 -)

  • 차상화;지홍기;이순탁
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1227-1233
    • /
    • 2002
  • In general, the evaluation of water supply capacity is important factor to establish various establishment of water resource supply plan include water resource security and determination of dam's mass. But former researchs about estimation of water supply capacity were lack in continunity of evaluation basis, and didn't excute analysis on reliability criteria also. In this study, Nakdong river was selected for study basin, and then water supply capacity was analyzed by HEC-5 model using identical reliability criteria.

A Study on the Rainfall Forecasting Using Neural Network Model in Nakdong River Basin - A Comparison with Multivariate Model- (낙동강유역에서 신경망 모델을 이용한 강우예측에 관한 연구 - 다변량 모델과의 비교 -)

  • Cho, Hyeon-Kyeong;Lee, Jeung-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.51-59
    • /
    • 1999
  • This study aims at the development of the techniques for the rainfall forecasting in river basins by applying neural network theory and compared with results of Multivariate Model (MVM). This study forecasts rainfall and compares with a observed values in the San Chung gauging stations of Nakdong river basin for the rainfall forecasting of river basin by proposed Neural Network Model(NNM). For it, a multi-layer Neural Network is constructed to forecast rainfall. The neural network learns continuous-valued input and output data. The result of rainfall forecasting by the Neural Network Model is superior to the results of Multivariate Model for rainfall forecasting in the river basin. So I think that the Neural Network Model is able to be much more reliable in the rainfall forecasting.

  • PDF

A Study on Run-off of Small Basins Representing the four major Rivers in Korea (소류역의 유출량에 관한 연구 (사대강을 중심으로))

  • 이석우;김시원;엄태영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.2
    • /
    • pp.55-63
    • /
    • 1980
  • To study run-off characteristics in the small watersheds in Korea, investigations had been carried out for a period of 4 years from 1972 to 1975 in the sample watersheds. The samples were selected in four major river basins such as the Han River, the Keum River, the Nakdong River and the Yongsan River. Water levels and rainfall data had been. collected from each sample area where the measuring instruments were installed. The findings of this investigation can be summarized as follows; 1. With an average runoff rate of 60% in the sample watersheds, the average runoff rate. in each sample proved to be as below; the Han River Basin : 41.4% the Keum River Basin : 61.7% the Nakdong River Basin : 69.4% the Yong San River Basin : 69.2% 2. The base flow rate in the sample watersheds proved to be 8.1 mm/month. 3. A comparison of the runoff obtained from actual measurements made and that calculated by the Kaijyama formula showed that the latter is 9.1% lower than the former.

  • PDF

A Study on the Relationship between Stream Patterns and Geologic Structures in South Korea (남한의 수계발달과 지질구조와의 관계에 관한 연구)

  • Kim, Kyu Han;Kim, Wan Sook
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.593-599
    • /
    • 1994
  • Drainage patterns were investigated to interpret the unknown geologic structure and geomorphic history in South Korea. Dendritic and rectangular patterns are most prominent ones developed in the granitic and sedimentary terrain. Drainage density ranges from 0.47 in the Nakdong river basin to 0.31 in the South Han river basin. Fine drainge texture is appeared in the Nakdong basin characterized by sedimentary beds of Mesozoic age, and coarse one are in the South Han river basin where Precambrian metamorphic rocks are dominated. Geological structures interpreted by stream pattern analysis are reasonally good agreement with the result by lineaments analysis and geological mapping.

  • PDF