• Title/Summary/Keyword: Nakayasu 방법

Search Result 9, Processing Time 0.016 seconds

Comparative Analysis of Existing Synthetic Unit Hydrograph in Korea (국내기존 합성단위유량도 비교분석)

  • 전시영
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.97-109
    • /
    • 1994
  • Parameters for the Synthetic Unit Hydrograph(SUH) using SCS and v methods(including modified type) are derived by regression analysis of the Representative Unit Hydrograph(RUH) of 22 basins in Korea. These derived SUHs were compared with the RUHs and those of Snyder and HYMO given by the Korea Institute of Construction Technology (KICT) for selected 4 basins. In SCS method, when correlated with the lag time of SUHs based on the whole basin rather than on the riverwise basins the peak discharge(excluding Bocheng stream) is close to that of RUH. BUt the peak time given by riverwise basins agrees closer to the RUH than by the whole basins. The modified Nakayasu type SUH(excluding Wi stream) associated with lag time based on riverwise basins gives better agreements to the RUH than that of Nakayasu method. And the modified Nakayasu type SUH gives much better agreement to the RUH than that of Nakayasu method for the case of both whole and riverwise basins.

  • PDF

The Comparison of Existing Synthetic Unit Hydrograph Method in Korea (국내 기존 합성단위도 방법의 비교)

  • Jeong, Seong-Won;Mun, Jang-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.659-672
    • /
    • 2001
  • Generally, design flood for a hydraulic structure is estimated using statistical analysis of runoff data. However, due to the lack of runoff data, it is difficult that the statistical method is applied for estimation of design flood. In this case, the synthetic unit hydrograph method is used generally and the models such as NYMO method, Snyder method, SCS method, and HYMO method have been widely used in Korea. In this study, these methods and KICT method, which is developed in year 2000, are compared and analyzed in 10 study areas. Firstly, peak flow and peak time of representative unit hydrograph and synthetic unit hydrograph in study area are compared, and secondly, the shape of unit hydrograph is compared using a root mean square error(RMSE). In Nakayasu method developed in Japan, synthetic unit hydrograph is very different from peak flow, peak time, and the shape of representative unit hydrograph, and KICT method(2000) is superior to others. Also, KICT method(2000) is superior to others in the aspects of using hydrologic and topographical data. Therefore, Nakayasu method is not a proper in hydrological practice. Moreover, it is considered that KICT model is a better method for the estimation of design flood. However, if other model, i.e. SCS method, Nakayasu method, and HYMO method, is used, parameters or regression equations must be adjusted by analysis of real data in Korea.

  • PDF

Verification about Threshold Discharge Computation using GIUH on ungauged small basin (지형학적순간단위도를 이용한 미계측 소유역의 한계유출량 산정 검증)

  • Choi Hyun;Lee Sang-Jin
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.15-27
    • /
    • 2006
  • This paper is about the threshold discharge computation using GIUH(Geomorphoclimatic Instantaneous Unit Hydrograph) on ungauged small basin. GIUH is one of the possible approaches to predicting the hydrograph characteristics. This study is calculated the various ways which are hydrologic characteristics, bankfull flows, unit peak flows(the Clark, the Nakayasu and the S.C.S) as well as threshold runoffs on about $5km^2$ scale at Kyungbuk gampo in subbasin. We are estimated propriety that peak discharge calculated the GIUH from acquiring data by GIS(Geographic Information System) compared to observed peak discharge. And, the threshold discharge was calculated by NRCS(Natural Resources Conservation Service) for a flash flood standard rainfall.

  • PDF

An Analysis on Hydrologic Characteristics of Design Rainfall for the Design of Hydraulic Structure (수공구조물 설계를 위한 설계강우의 수문학적 특성 분석)

  • Lee, Jeong-Sik;Lee, Jae-Jun;Park, Jong-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.1
    • /
    • pp.67-80
    • /
    • 2001
  • This study is to propose temporal pattern of design rainfall which causes maximum peak discharge and to analyze the variation in peak discharge according to design rainfall durations. In this study, the Mononobe, the Yen and Chow triangular, the Huff's 4th quartiles and the Keifer and Chu methods are applied to estimate the proper temporal pattern of design rainfall and three rainfall-runoff models such as SCS, Nakayasu, and Clark methods are used to estimate the runoff hydrograph. And to examine the variability of peak discharge, the hydrologic characteristics from the rainfall-runoff models to which uniform rainfall intensity is applied are used as the standard values. The type of temporal pattern of design rainfall which causes maximum peak discharge in both of the watersheds and the rainfall-runoff models has resulted in Yen and Chow distribution method with the dimensionless vague of 0.75. On the basis of determined temporal pattern, the examination of the variability of peak discharge according to design rainfall durations shows that design rainfall duration varies greatly with the types of probable intensity formula, and the variation of peak discharge is more affected by the types of probable intensity formula and I-D-F currie than rainfall-runoff models.

  • PDF

An Analysis of critical duration for Design of Hydraulic Structure (수공구조물 설계를 위한 임계지속시간 결정)

  • Lee, Sangjin;Kim, Woo Gu;Whang, Manha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.814-818
    • /
    • 2004
  • 최근 기상이변이 빈번하여 자연재해에 대한 방재대책의 중요함이 절실히 요청되는 시점에서 수공구조물들의 설계빈도를 상향조정하는 등의 대책이 마련되고 있는 실정을 고려할 때 유역의 수문학적 안정성을 확보하기 위한 최적방안을 마련하는데 필요한 강우의 임계지속시간 결정에 대한 연구를 수행하였다. 홍수제어를 위한 수공구조물은 그 특성상 계획홍수량 결정에 최대치 개념이 도입되어야 하므로, 설계강우의 지속기간을 결정할 경우 강우로 인한 최대유출과 홍수총량이 최대가 되는 임계지속기간을 이용하여 검토하는 것이 필요하다. 본 연구에서는 합성단위도(Clark방법, Nakayasu방법, SCS방법)등 각 수문요소에 따른 임계지속기간의 변동양상을 파악한 길과 24시간 강우지속시간시 총유출량 보다 임계지속시간개념으로 산정한 유출량이 크게 산출되었으며, 시간분포모형(Huff의 4분위법, IDF곡선 분포법, Mononobe방법)별 적합성을 평가함으로써 수문설계시 활용 할 수 있는 자료를 제시하고자 하였다.

  • PDF

An Analysis of PMF and Critical Duration for Design of Hydraulic Structure (수공구조물 설계를 위한 PMF 및 임계지속시간 분석)

  • Lee, Sang-Jin;Choi, Hyun;Shin, Hee-beom;Park, Sang-Kil
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.9
    • /
    • pp.707-718
    • /
    • 2004
  • This study is to analyze the Probable Maximum Flood(PMF) as a part of counterplan for the disaster prevention of hydraulic structures such as dams, according to recent unfavorable weather conditions. During the period of typhoon RUSA in August 2002, the rainfall recorded in Gang-loeng Province was 880mm a day and exceeded the scale of PMP made in 2001. Accordingly, the reconsideration of hydrologic criteria for dam design was inevitable. In the design of dams for flood controls, the design flood must be determined by introducing the concept of maximum values. When the duration of design rainfall is determined, it needs to use the critical duration which causes the maximum flood by the maximum runoff. In this study, we Investigate the variation of critical duration with hydrologic parameters used in three different synthetic unit hydrographs(Clark, Nakayasu and SCS methods). As a result, the total runoff calculated from 24-hour duration is larger than that calculated from the critical duration. We calculate also the hydrographs with three different time distribution models(Huff's 4-quartile, IDF curve and Mononobe) and compare those with measured hydrograph data. From this comparison, we propose that the Huff's 4-quartile model must be used to obtain the desirable data in the hydrologic design of dams.

A Stiudy on the Deveplopment of Algorithm for the Representative Unit Hydrograph of a Watershed as a Closed Linear System. (폐선형계로 본 유역대표 단위유량도의 유도를 위한 알고리즘의 개발에 관한 연구)

  • 김재한;이원환
    • Water for future
    • /
    • v.13 no.2
    • /
    • pp.35-47
    • /
    • 1980
  • An algorithm is developed to derive a representative I hr-unit hydrograph through an analysis of rainfall-runoff relations of a watershed as a closed system. For the base flow seperation of a flood hydrograph the multi-deflection method is proposed herein, which gace better results compared with those by the existing empirical methods. A modified $\Phi$index method is also proposed in this stidy to determine the time distribution rainfall excess of a rainstorm, which is essetially a modification of the commonly used $\Phi$index method of rainfall seperation. With the so-obtained rainfall excess hyetograph and the direct runoff hydrograph a trial and error computation of the ordinates of 1 hr-unit hydrograph was executed in such a manner that the synthesized flood hydrograph closely approximates the observed one, thus resulting a unit hydrograph of a piecewise exponential function type. To verify the validity of this study the 1 hr-unit hydrographs for the Imha and Dongchon in Nagdong River basin, and Yongdam in Geum River basin were derived by this algorithm, and the results were compared with those by the conventional synthetic unit hydrograph method and the Nakayasu method. Besides, the validity of this stiudy was also tested by comparing the observed hydrograph with the one computed by applying the unit hydrograph to a specific rainfall event. To generalize the result of this study a computer program, consisited of a main and three subprograns (for rainfall excess estimation, convolution summation, and sorting), is developed as a package, which is believed to be applicable to other watersheds for the similar purpose as those in this study.

  • PDF

Appication of A Single Linear Reservoir Model for Flood Runoff Computation of Small Watersheds (소유역량의 홍수유출계산을 위한 단일선형 저수지 모형의 적용)

  • 김재형;윤용남
    • Water for future
    • /
    • v.19 no.1
    • /
    • pp.65-74
    • /
    • 1986
  • The purpose of this study was to investigate the applicability of Single Linear Reservoir (SLR) model for runoff computations of small river basins in Korea. In the existing watershed flood routing methods the storage coefficient(K), which is the dominant parameter in the model, has been proposed to be computed in terms of the wqtershed characteristics. However, in the prsent study, the rainfall characteristics in addition to the watershed characteristics were taken into account in the multiple regression analysis for more accurate estimation of storage coefficient. The parameters finally adopted for the regressions were the drainge are, mean stream slope of the watershed, and the duration and total dffective amount of rainfalls. To verify the applicability of SLR model the computed results by SLR model with K determined by the regression equation were compared with the observed gydrographs, and also with those by other runoff computation methods; namely, the Clark method, nakayasu's synthetic unit hydrograph method and Nash model. The results showed that the present zSLR model gave the best results among these methods in the case of small river basins, but for the whatersheds with significant draingage area the Clark method gave the best results. However, it was speculated that the SLR model could also be accurately applied for flood compuatation in large wagersheds provided that the regression for storage coefficients were made with the actual data obtained in the large river basins.

  • PDF

Runoff Characteristics Analysis using GCUH on Ungauged Small Basin (지형기후학적순간단위유량도를 이용한 미계측 소유역의 유출특성 분석)

  • Lee, Sang-Jin;Choi, Hyun;Lee, Bae-Sung;Jeong, Dong-Kug
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.15-22
    • /
    • 2006
  • Runoff Characteristics has been Analysis Using geomorphologic Instantaneous Unit Hydrograph(GIUH) and geomorphoclimatic unit hydrograph(GCUH) on an ungaged vary small basin about $5km^2$ scale in Kyungbuk gampo area. First, we estimated hydrology Factor using Geographic Information System(GIS) tool and then, calculated the characteristic velocity using the real rainfall-runoff data. It is compared with several velocities derived from GCUH theory and several other concentration time formulae. Kerby and Braby-Williams seems to be more applicable as characteristic velocity formula. Second, We compared the GCUH peak discharge with the probable flood, also compared the unit hydrograph as like the Clark, the Nakayasu and the S.C.S and GCUH with the observed discharge using the real rainfall events. The comparison results showed that GCUH could be applicable on an ungaged vary small basin. We expected that the result can be used as for estimation of a flash flood standard rainfall as well as emergency management plan.

  • PDF