• Title/Summary/Keyword: Naive Bayesian Network

Search Result 41, Processing Time 0.021 seconds

A Study of Performance Comparison of MOOC Dropout Prediction utilizing Machine Learning (기계학습 방법을 이용한 MOOC 학습자의 중도 포기 예측 성능 비교 연구)

  • Hur, Yun-A;Lim, Heui-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.323-326
    • /
    • 2016
  • 웹 서비스를 기반으로 이루어진 MOOC(Massive Open Online Course)는 대규모 학습자에게 공개된 온라인 교육이다. MOOC는 교수와 학습자 사이 커뮤니티를 통해 상호 참여적으로 수업을 진행한다. 그러나 무료로 강의를 들을 수 있고 성적을 내지 않기 때문에 학습자들에게 큰 동기 부여가 되지 않아 등록하는 학습자는 많지만 수료하는 학습자는 현저히 적게 나타났다. 본 논문은 이러한 문제 해결 방안 마련을 위해 KDD Cup 2015에서 제공한 MOOC 데이터를 통해 중도 포기와 관련된 변수들을 선정하였으며, Decision Tree, KNN, Logistic Regression, Naive Bayesian, SVM, Neural Network인 6가지 머신 러닝 알고리즘을 통해 데이터 예측의 정확률을 확인하였다. 그 결과 Naive Bayesian이 89.3%로 가장 높은 정확률을 보였다. 본 연구를 통해 중도포기를 정확히 예측하며, 향후 학습자들에게 특정 동기부여의 효과로 학습을 수료하는 결과를 기대할 수 있다.

The performance of Bayesian network classifiers for predicting discrete data (이산형 자료 예측을 위한 베이지안 네트워크 분류분석기의 성능 비교)

  • Park, Hyeonjae;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.309-320
    • /
    • 2020
  • Bayesian networks, also known as directed acyclic graphs (DAG), are used in many areas of medicine, meteorology, and genetics because relationships between variables can be modeled with graphs and probabilities. In particular, Bayesian network classifiers, which are used to predict discrete data, have recently become a new method of data mining. Bayesian networks can be grouped into different models that depend on structured learning methods. In this study, Bayesian network models are learned with various properties of structure learning. The models are compared to the simplest method, the naïve Bayes model. Classification results are compared by applying learned models to various real data. This study also compares the relationships between variables in the data through graphs that appear in each model.

Transmission Delay Estimation-based Forwarding Strategy for Load Distribution in Software-Defined Network (SDN 환경에서 효율적 Flow 전송을 위한 전송 지연 평가 기반 부하 분산 기법 연구)

  • Kim, Do Hyeon;Hong, Choong Seon
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.5
    • /
    • pp.310-315
    • /
    • 2017
  • In a centralized control structure, the software defined network controller manages all openflow enabled switched in a data plane and controls the telecommunication between all hosts. In addition, the network manager can easily deploy the network function to the application layer with a software defined network controller. For this reason, many methods for network management using a software defined network concept have been proposed. The main policies for network management are related to traffic Quality of Service and resource management. In order to provide Quality of Service and load distribution for network users, we propose an efficient routing method using a naive bayesian algorithm and transmission delay estimation module. In this method, the forwarding path is decided by flow class and estimated transmission delay result in the software defined network controller. With this method, the load on the network node can be distributed to improve overall network performance. The network user also gets better dynamic Quality of Service.

Fingerprinting Bayesian Algorithm for Indoor Location Determination (실내 측위 결정을 위한 Fingerprinting Bayesian 알고리즘)

  • Lee, Jang-Jae;Kwon, Jang-Woo;Jung, Min-A;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6B
    • /
    • pp.888-894
    • /
    • 2010
  • For the indoor positioning, wireless fingerprinting is most favorable because fingerprinting is most accurate among the technique for wireless network based indoor positioning which does not require any special equipments dedicated for positioning. The deployment of a fingerprinting method consists of off-line phase and on-line phase and more efficient and accurate methods have been studied. This paper proposes a bayesian algorithm for wireless fingerprinting and indoor location determination using fuzzy clustering with bayesian learning as a statistical learning theory.

Machine Learning Model of Gyro Sensor Data for Drone Flight Control (드론 비행 조종을 위한 자이로센서 데이터 기계학습 모델)

  • Ha, Hyunsoo;Hwang, Byung-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.6
    • /
    • pp.927-934
    • /
    • 2017
  • As the technology of drone develops, the use of drone is increasing, In addition, the types of sensors that are inside of smart phones are becoming various and the accuracy is enhancing day by day. Various of researches are being progressed. Therefore, we need to control drone by using smart phone's sensors. In this paper, we propose the most suitable machine learning model that matches the gyro sensor data with drone's moving. First, we classified drone by it's moving of the gyro sensor value of 4 and 8 degree of freedom. After that, we made it to study machine learning. For the method of machine learning, we applied the One-Rule, Neural Network, Decision Tree, and Navie Bayesian. According to the result of experiment that we designated the value from gyro sensor as the attribute, we had the 97.3 percent of highest accuracy that came out from Naive Bayesian method using 2 attributes in 4 degree of freedom. On and the same, in 8 degree of freedom, Naive Bayesian method using 2 attributes showed the highest accuracy of 93.1 percent.

Towards Effective Analysis and Tracking of Mozilla and Eclipse Defects using Machine Learning Models based on Bugs Data

  • Hassan, Zohaib;Iqbal, Naeem;Zaman, Abnash
    • Soft Computing and Machine Intelligence
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Analysis and Tracking of bug reports is a challenging field in software repositories mining. It is one of the fundamental ways to explores a large amount of data acquired from defect tracking systems to discover patterns and valuable knowledge about the process of bug triaging. Furthermore, bug data is publically accessible and available of the following systems, such as Bugzilla and JIRA. Moreover, with robust machine learning (ML) techniques, it is quite possible to process and analyze a massive amount of data for extracting underlying patterns, knowledge, and insights. Therefore, it is an interesting area to propose innovative and robust solutions to analyze and track bug reports originating from different open source projects, including Mozilla and Eclipse. This research study presents an ML-based classification model to analyze and track bug defects for enhancing software engineering management (SEM) processes. In this work, Artificial Neural Network (ANN) and Naive Bayesian (NB) classifiers are implemented using open-source bug datasets, such as Mozilla and Eclipse. Furthermore, different evaluation measures are employed to analyze and evaluate the experimental results. Moreover, a comparative analysis is given to compare the experimental results of ANN with NB. The experimental results indicate that the ANN achieved high accuracy compared to the NB. The proposed research study will enhance SEM processes and contribute to the body of knowledge of the data mining field.

An Effective Management Method of Multi-Agent Using Naive Bayes (네이브 베이즈를 이용한 멀티 에이전트의 효율적인 관리 방법)

  • Hwang Jeong-Sik;Ryu Kyung-Hyun;Chung Hwan-Mook
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.275-278
    • /
    • 2006
  • 멀티 에이전트(Multi-Agent)들이 상호 연동하여 공통의 목적을 수행하기 위해서는 에이전트를 관리하는 매니지먼트 에이전트(Management Agent)가 요구되고, 주어진 환경에서 획득한 제한된 지식을 효율적으로 이용하는 방법이 필요하다. 본 논문에서는 네이브 베이즈 이론을 적용하여 각 에이전트의 속성값(Attribute Value)에 따라 매니지먼트 에이전트가 각 에이전트를 효율적으로 관리할 수 있는 NBMA(Naive Bayes Management Agent)를 제안하고 이를 이용한 미팅 참가 결정 에이전트를 제안한다. NBMA는 고유한 속성을 지닌 여러 개의 하위 에이전트와 그들을 관리하는 매니지먼트 에이전트로 구성되어 있으며 매니지먼트 에이전트는 하위 에이전트들의 고유한 속성에 대한 메타지식을 이용하여 관리 하도록 한다. 하위 에이전트간에는 상호 조건부 독립(mutually conditional independence) 가정하에 복수의 속성값을 취하며 이러한 속성값에 따라 매니지먼트 에이전트가 조정과 의사결정을 하도록 한다.

  • PDF

Fast Conditional Independence-based Bayesian Classifier

  • Junior, Estevam R. Hruschka;Galvao, Sebastian D. C. de O.
    • Journal of Computing Science and Engineering
    • /
    • v.1 no.2
    • /
    • pp.162-176
    • /
    • 2007
  • Machine Learning (ML) has become very popular within Data Mining (KDD) and Artificial Intelligence (AI) research and their applications. In the ML and KDD contexts, two main approaches can be used for inducing a Bayesian Network (BN) from data, namely, Conditional Independence (CI) and the Heuristic Search (HS). When a BN is induced for classification purposes (Bayesian Classifier - BC), it is possible to impose some specific constraints aiming at increasing the computational efficiency. In this paper a new CI based approach to induce BCs from data is proposed and two algorithms are presented. Such approach is based on the Markov Blanket concept in order to impose some constraints and optimize the traditional PC learning algorithm. Experiments performed with the ALARM, as well as other six UCI and three artificial domains revealed that the proposed approach tends to execute fewer comparison tests than the traditional PC. The experiments also show that the proposed algorithms produce competitive classification rates when compared with both, PC and Naive Bayes.

Investigating the Performance of Bayesian-based Feature Selection and Classification Approach to Social Media Sentiment Analysis (소셜미디어 감성분석을 위한 베이지안 속성 선택과 분류에 대한 연구)

  • Chang Min Kang;Kyun Sun Eo;Kun Chang Lee
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.1-19
    • /
    • 2022
  • Social media-based communication has become crucial part of our personal and official lives. Therefore, it is no surprise that social media sentiment analysis has emerged an important way of detecting potential customers' sentiment trends for all kinds of companies. However, social media sentiment analysis suffers from huge number of sentiment features obtained in the process of conducting the sentiment analysis. In this sense, this study proposes a novel method by using Bayesian Network. In this model MBFS (Markov Blanket-based Feature Selection) is used to reduce the number of sentiment features. To show the validity of our proposed model, we utilized online review data from Yelp, a famous social media about restaurant, bars, beauty salons evaluation and recommendation. We used a number of benchmarking feature selection methods like correlation-based feature selection, information gain, and gain ratio. A number of machine learning classifiers were also used for our validation tasks, like TAN, NBN, Sons & Spouses BN (Bayesian Network), Augmented Markov Blanket. Furthermore, we conducted Bayesian Network-based what-if analysis to see how the knowledge map between target node and related explanatory nodes could yield meaningful glimpse into what is going on in sentiments underlying the target dataset.

Intelligent Modeling of User Behavior based on FCM Quantization for Smart home (FCM 이산화를 이용한 스마트 홈에서 행동 모델링)

  • Chung, Woo-Yong;Lee, Jae-Hun;Yon, Suk-Hyun;Cho, Young-Wan;Kim, Eun-Tai
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.542-546
    • /
    • 2007
  • In the vision of ubiquitous computing environment, smart objects would communicate each other and provide many kinds of information about user and their surroundings in the home. This information enables smart objects to recognize context and to provide active and convenient services to the customers. However in most cases, context-aware services are available only with expert systems. In this paper, we present generalized activity recognition application in the smart home based on a naive Bayesian network(BN) and fuzzy clustering. We quantize continuous sensor data with fuzzy c-means clustering to simplify and reduce BN's conditional probability table size. And we apply mutual information to learn the BN structure efficiently. We show that this system can recognize user activities about 80% accuracy in the web based virtual smart home.