데이터베이스 시스템의 응용분야가 데이터웨어하우징에서 전자상거래에 이르기까지 광범위해지면서 데이터베이스 시스템이 대형화되었다. 이로 인해 데이터베이스 시스템의 성능 향상을 위한 튜닝이 중요한 논점이 되었다. 데이터베이스 시스템의 튜닝은 워크로드 특성을 고려하여 수행할 필요가 있다. 그러나 복합적인 데이터베이스 환경에서 워크로드를 식별하기는 어려우므로 자동적인 식별 방법이 요구된다. 본 논문에서는 데이터베이스 워크로드를 자동적으로 식별하는 SVM 워크로드 분류기를 제안한다. TPC-C와 TPC-W 성능 평가에서 자원할당 파라미터 변경에 따른 워크로드 데이터를 수집하여 SVM을 통해 분류 한다. SVM의 커널별 커널 파라미터와 오류 허용 임계치 값인 C의 조정을 통하여 최적의 SVM 워크로드 분류기를 선택한다. 제안한 SVM 워크로드 분류기와 Decision Tree, Naive Bayes, Multilayer Perceptron, K-NN 분류기의 분류 성능을 비교한 결과, SVM 워크로드 분류기가 다른 기계 학습 분류기보다 9% 이상 향상된 분류 성능을 보였다.
본 논문에서는 명제화된 어트리뷰트 택소노미를 이용하여 간결하고 강건한 분류기를 생성하는 문제를 고려한다. 이 문제를 해결하기 위해 명제화된 어트리뷰트 택소노미(Propositionalized Attribute Taxonomy)를 이용하는 나이브 베이스 학습 알고리즘(Naive Bayes Learner)인 PAT-NBL을 소개한다. PAT-NBL은 명제화 된 어트리뷰트들의 택소노미를 선험 지식으로 이용하여 간결하고 정확한 분류기를 귀납적으로 학습하는 알고리즘이다. PAT-NBL은 주어진 택소노미에서 지역적으로 최적의 컷(cut)을 찾아내기 위해 하향식 탐색과 상향식 탐색을 사용한다. 찾아낸 최적의 컷은 명제화 된 어트리뷰트 택소노미와 데이터로부터 그에 상응하는 인스턴스 공간(instance space)을 구성할 수 있게 해준다. University of California-Irvine (UCI) 저장소의 기계학습 벤치마크 데이터에 대한 실험 결과를 보면, 제안된 알고리즘이 표준적인 나이브 베이스 학습 알고리즘에 의해 만들어진 분류기들과 비교해 볼 때, 가끔은 보다 간결하고 더 정확한 분류기를 생성해 낸다는 사실을 알 수 있었다.
본 논문에서는 명제화된 어트리뷰트 택소노미를 이용하여 간결하고 강건한 분류기를 생성하는 문제를 고려한다. 이 문제를 해결하기 위해 명제화된 어트리뷰트 택소노미(Propositionalized Attribute Taxonomy)를 이용하는 나이브 베이스 학습 알고리즘(Naive Bayes Learner)인 PAT-NBL을 소개한다. PAT-NBL은 명제화된 어트리뷰트들의 택소노미를 선험 지식으로 이용하여 간결하고 정확한 분류기를 귀납적으로 학습하는 알고리즘이다. PAT-NBL은 주어진 택소노미에서 지역적으로 최적의 컷(cut)을 찾아내기 위해 하향식 탐색과 상향식 탐색을 사용한다. 찾아낸 최적의 컷은 명제화된 어트리뷰트 택소노미와 데이터로부터 그에 상응하는 인스턴스 공간(instance space)을 구성 할 수 있게 해준다. University of California-Irvine (UCI) 저장소의 기계학습 벤치마크 데이터에 대한 실험 결과를 보면, 제안된 알고리즘이 표준적인 나이브 베이스 학습 알고리즘에 의해 만들어진 분류기들과 비교해 볼 때, 가끔은 보다 간결하고 더 정확한 분류기를 생성해 낸다는 사실을 알 수 있었다.
Lin, Zhaowen;Xiao, Fei;Sun, Yi;Ma, Yan;Xing, Cong-Cong;Huang, Jun
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권4호
/
pp.1799-1818
/
2018
Malware detections continue to be a challenging task as attackers may be aware of the rules used in malware detection mechanisms and constantly generate new breeds of malware to evade the current malware detection mechanisms. Consequently, novel and innovated malware detection techniques need to be investigated to deal with this circumstance. In this paper, we propose a new secure malware detection system in which API call fragments are used to recognize potential malware instances, and these API call fragments together with the homomorphic encryption technique are used to construct a privacy-preserving Naive Bayes classifier (PP-NBC). Experimental results demonstrate that the proposed PP-NBC can successfully classify instances of malware with a hit-rate as high as 94.93%.
최근 스마트폰 사용 형태의 도움을 받아 사용자 특성을 예측하는 것은 매우 흥미롭고 주의를 사로잡는 연주 주제이다. 현재 몇몇 연구들은 사용자의 특성을 예측하기 위해 전화 사용 기록, 문자 메시지 사용 기록, 소셜 네트워크 서비스 사용 기록 등을 이용하고 있다. 이 논문에서, 우리는 MBTI 사용자 특성과 스마트폰 사용로그 간의 관계를 평가한다. 이를 위해, 스마트폰 사용 기록에서 부터 몇몇 특징들을 추출하고 이를 Naive Bayes와 SVM등의 분류기에 적용하여 사용자의 특성을 구분하였다. 사용자 특성 분석 결과의 분석을 통해 facebook사용 기록이 외향적인 사람과 내향적인 사람을 가장 잘 구분하는 것을 알 수 있었고, SVM 분류기가 Naive Bayes보다 사용자의 특성을 잘 예측하는 것을 확인하였다.
본 논문에서는 최근 활발히 연구가 진행되고 있는 행위인식 연구 분야 중에서 스마트폰 환경에서의 개인화된 행위 인식기 및 로거를 제안한다. 최근 스마트폰의 보급이 활발해지면서 행위 인식 연구 분야에서 스마트폰을 이용하는 연구가 활발히 진행되고 있다. 그러나 스마트폰에서는 센서를 이용하여 행위정보를 수집하고, 서버에서 는 분류 및 처리하는 방식으로 실시간 인식과 개발자에 의한 트레이닝으로 인해 개인화된 트레이닝이 불가능하다는 단점이 있다. 이러한 단점을 극복하고자 Naive Bayes Classifier를 사용하여 스마트폰 환경에서 실시간으로 사용자 행위 수집이 가능하고 행위정보의 분류 및 처리가 가능한 경량화 및 개인화된 행위 인식기 및 로거의 구현을 목적으로 한다. 제안하는 방법은 행위 인식기를 통해 행위 인식이 가능할 뿐만 아니라 로거를 통해 사용자의 라이프로그, 라이프패턴 등의 연구 분야에 이용이 가능하다.
Shivkumar M;Sudhindra K R;Pranesha T S;Chate D M;Beig G
International Journal of Computer Science & Network Security
/
제24권3호
/
pp.196-200
/
2024
Weather forecasting is considered to be of utmost important among various important sectors such as flood management and hydro-electricity generation. Although there are various numerical methods for weather forecasting but majority of them are reported to be Mechanistic computationally demanding due to their complexities. Therefore, it is necessary to develop and build models for accurately predicting the weather conditions which are faster as well as efficient in comparison to the prevalent meteorological models. The study has been undertaken to forecast various atmospheric parameters in the city of Bangalore using Naïve Bayes algorithms. The individual parameters analyzed in the study consisted of wind speed (WS), wind direction (WD), relative humidity (RH), solar radiation (SR), black carbon (BC), radiative forcing (RF), air temperature (AT), bar pressure (BP), PM10 and PM2.5 of the Bangalore city collected from Air Quality Monitoring Station for a period of 5 years from January 2015 to May 2019. The study concluded that Naive Bayes is an easy and efficient classifier that is centered on Bayes theorem, is quite efficient in forecasting the various air pollution parameters of the city of Bangalore.
Journal of the Korean Data and Information Science Society
/
제11권1호
/
pp.19-30
/
2000
정보통신기술의 비약적인 발전은 온라인으로 생성되는 전자문서의 양을 폭발적으로 증가시키고 있다. 따라서 수동으로 문서를 분류하던 종래의 방법 대신 문서의 자동분유 기술 개발이 특별히 요구되고 있다. 본 논문에서는 베이지안 학습 기법을 이용하여 문서를 자동으로 분류하는 방법을 연구하고, 20개의 유즈넷 뉴스그룹 문서들을 분류하도록 시험하였다. 사용한 알고리즘은 Naive Bayes Classifier이며, 구현한 시스템을 이용해 유즈넷 문서를 대상으로 자동분류를 실험한 결과 분류의 정확률이 약 77%로 나타났다.
기계학습 기법을 이용한 문서분류시스템의 정확도를 결정하는 요인 중 가장 중요한 것은 학습문서 집합의 선택과 그것의 구성방법이다. 학습문서집합 선택의 문제란 임의의 문서공간에서 보다 정보량이 큰 적은 양의 문서집합을 골라서 학습문서로 채택하는 것을 말한다. 이렇게 선택한 학습문서집합을 재구성하여 보다 정확도가 높은 문서분류함수를 만드는 것이 학습문서집합 구성방법의 문제이다. 전자의 문제를 해결하는 대표적인 알고리즘이 능동적 학습(active learning) 알고리즘이고, 후자의 경우는 부스팅(boosting) 알고리즘이다. 본 논문에서는 이 두 알고리즘을 Naive Bayes 문서분류 알고리즘에 적응해보고, 이때 생기는 여러 가지 특징들을 분석하여 새로운 학습문서집합 구성방법인 AdaBUS 알고리즘을 제안한다. 이 알고리즘은 능동적 학습 알고리즘의 아이디어를 이용하여 최종 문서분류함수룰 만들기 위해 임시로 만든 여러 임시 문서분류함수(weak hypothesis)들 간의 변이(variance)를 높였다. 이를 통해 부스팅 알고리즘이 효과적으로 구동되기 위해 필요한 핵심 개념인 교란(perturbation)의 효과를 실현하여 문서분류의 정확도를 높일 수 있었다. Router-21578 문서집합을 이용한 경험적 실험을 통해, AdaBUS 알고리즘이 기존의 알고리즘에 비해 Naive Bayes 알고리즘에 기반한 문서분류시스템의 정확도를 보다 크게 향상시킨다는 사실을 입증한다.
International Journal of Computer Science & Network Security
/
제21권2호
/
pp.229-237
/
2021
Our modern 'information-hungry' age demands delivery of information at unprecedented fast rates. Timely delivery of noteworthy information about recent events can help people from different segments of life in number of ways. As world has become global village, the flow of news in terms of volume and speed demands involvement of machines to help humans to handle the enormous data. News are presented to public in forms of video, audio, image and text. News text available on internet is a source of knowledge for billions of internet users. Urdu language is spoken and understood by millions of people from Indian subcontinent. Availability of online Urdu news enable this branch of humanity to improve their understandings of the world and make their decisions. This paper uses available online Urdu news data to train machines to automatically categorize provided news. Various machine learning algorithms were used on news headline for training purpose and the results demonstrate that Bernoulli Naïve Bayes (Bernoulli NB) and Multinomial Naïve Bayes (Multinomial NB) algorithm outperformed other algorithms in terms of all performance parameters. The maximum level of accuracy achieved for the dataset was 94.278% by multinomial NB classifier followed by Bernoulli NB classifier with accuracy of 94.274% when Urdu stop words were removed from dataset. The results suggest that short text of headlines of news can be used as an input for text categorization process.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.