본 논문에서는 컨볼루션 신경회로망(CNN: Convolutional Neural Network)과 다양한 분류기들의 결합을 통해 분류성능을 비교하고자 한다. 현재 일반적인 분류기로 알려진 것은 나이브 베이즈(Naive bayes), 트리(Tree), 판별 분석(Discriminant Analysis), 서포트 벡터 머신(SVM: Support Vector Machine) 등이 존재한다. 분류기들은 각각 다른 원리로 분류하기 때문에, 각각 성능을 비교해볼 필요가 있다. 분류기들의 성능을 비교하기 위한 사용한 데이터는 CNN에서 자주 사용되고 있는 MNIST 데이터를 사용하였다. 실험 결과로는 CNN에 선형 SVM을 결합하여 사용한 것이 분류율과 분류속도 측면에서 다른 분류기들의 성능보다 좋은 성능을 보이는 것을 확인할 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2006.06a
/
pp.37-39
/
2006
지지 벡터 기계(Support Vector Machine; SVM)는 기본적으로 이진분류를 위해 고안되었지만, 최근 다양한 분류기 생성전략과 결합전략이 고안되어 다중부류 분류에도 적용되고 있다. 본 논문에서는 OVR(One-Vs-Rest) 전략으로 생성된 SVM을 NB(Naive Bayes) 분류기를 이용하여 동적으로 구성함으로써, OVR SVM을 이용한 다중부류 분류 시스템에서 자주 발생하는 동점을 효과적으로 해결하는 방법은 제안한다. 이 방법을 유전발현 데이터를 이용한 다중부류 암 분류에 적용하였는데, 고차원의 데이터로부터 NB 분류기 구축에 유용한 유전자를 선택하기 위해 Pearson 상관계수를 사용하였다. 14개의 암 유형과 16,063개의 유전발현 수준을 가지는 대표적인 다중부류 암 분류 데이터인 GCM 암 데이터에 적용하여 제안하는 방법의 유용성을 확인하였다.
텍스트를 분류해내는 일이 점점 중요해지고 있는 현 시점에서 기계학습은 다른 기법들보다도 가장 효과적인 성능을 드러낸다. 그 중에서도 특히 나이브 베이즈 분류기는 간절하고 효율적으로 알려진 기계학습 모델 중에 하나이다. 본 논문은 보다 효과적인 텍스트 분류를 위해 나이브 베이즈의 기법들을 응용 및 개선하고자 한 기존의 연구들을 소개하고, 이를 분석하고자 한다.
본 논문에서는 웹 및 문자 공지문을 자동으로 분류하고 추천함으로써 사용자가 원하는 공지문만을 볼 수 있도록 하는 애플리케이션을 개발한다. 본 애플리케이션은 공지문을 여러 카테고리로 자동 분류하여 사용자가 원하는 카테고리에 속한 공지문만을 볼 수 있도록 하며, 사용자가 선호할 만한 공지문을 추천하는 기능을 제공한다. 공지문 분류를 위해 다층 신경망 모델과 Naive Bayes 분류기를 사용하였으며, 공지문 추천을 위해 키워드 기반 자체 알고리즘을 사용하였다. 그 밖에 Word2Vec 을 활용한 검색어 추천 등 부가 기능을 제공하여 사용자가 쉽게 공지문을 찾을 수 있도록 하였다. 본 애플리케이션을 통해 사용자는 수많은 공지문 중 관심 있는 공지문만을 효율적으로 확인할 수 있다.
Annual Conference on Human and Language Technology
/
2010.10a
/
pp.186-190
/
2010
본 논문은 쇼핑몰의 이용 후기 중 광고성 리뷰를 분류해 내는 방법을 제안한다. 여기서 광고성 리뷰는 주로 업체에서 작성하는 것으로 리뷰 안에 광고 내용이 포함되어 있다. 국외 연구 중에는 드물게 오피니언 스팸 문서의 분류 연구가 진행되고 있지만 한국어 상품평으로부터 광고성 리뷰를 분류하는 연구는 아직 이루어지지 않고 있다. 본 논문에서는 Naive Bayes Classifier를 활용하여 광고성 리뷰를 분류하였다. 이때 확률 계산을 위해 사용된 특징 단어는 POS-Tagging+Bigram, POS-Tagging+Unigram, Bigram을 사용하여 추출하였다. 실험 결과는 POS-Tagging+Bigram 방법을 이용하였을 때 광고성 리뷰의 F-Measure가 80.35%로 정확도 높았다.
음악 감정 분류에 관한 기존의 연구들은 템포, 박자, 음정, 음표, 리듬 등과 같은 음악의 멜로디와 관련된 자질을 이용하여 음악 감정을 분류하였다. 그러나 노래(Song)와 같이 가사를 포함한 음악은 같은 스타일의 멜로디라도 가사의 내용에 따라 음악에 대하여 청자가 느끼는 감정이 크게 다르다. 본 논문에서는 감정 온톨로지를 활용하여 노래 가사를 감정에 따라 분류하는 방법에 대하여 제안한다. 기구축 된 감정 온톨로지를 바탕으로 네 가지 통사적 규칙을 적용하여 노래 가사로부터 감정 자질을 추출한다. 추출된 감정 자질을 이용하여 Naive Bayes, HMM, SVM과 같은 기계학습 기법을 이용하여 8개 감정 그룹에 대해 58.8%의 정확도를 보였다.
고객의 기호와 요구에 부응하는 서비스의 제공을 위해 영화 요소 중 정확한 장르의 분류는 고객의 선택에 있어 중요한 문제이다. 기존의 수작업에 의한 장르 분류는 시간과 비용, 신뢰성 등에서 비효율적이다. 이러한 문제의 해결을 위해 영화 시놉시스(Synopsis) 기반의 기계학습 방법은 효율적인 대안이 될 수 있다. 본 논문에서는 대다수 영화서비스 주체가 보유하고 있는 시놉시스 정보를 기반으로 하여 기계학습을 이용한 영화장르 분류에 관한 하나의 정형화된 방법을 제시한다. 기계학습 Algorithm 중 LibSVM, RandomComittee, LMT, NaiveBayes, PART Algorithm 을 이용하여 Algorithm 별, 장르별 분류 정확도를 측정하여 비교한다.
This paper presents a method of using virtual examples to improve the classification accuracy for data with nominal attributes. Most of the previous researches on virtual examples focused on data with numeric attributes, and they used domain-specific knowledge to generate useful virtual examples for a particularly targeted learning algorithm. Instead of using domain-specific knowledge, our method samples virtual examples from a naive Bayesian network constructed from the given training set. A sampled example is considered useful if it contributes to the increment of the network's conditional likelihood when added to the training set. A set of useful virtual examples can be collected by repeating this process of sampling followed by evaluation. Experiments have shown that the virtual examples collected this way.can help various learning algorithms to derive classifiers of improved accuracy.
Lin, Tzu-Kang;Yu, Li-Chen;Ku, Chang-Hung;Chang, Kuo-Chun;Kiremidjian, Anne
Smart Structures and Systems
/
v.8
no.1
/
pp.119-137
/
2011
A bio-inspired two-mode structural health monitoring (SHM) system based on the Na$\ddot{i}$ve Bayes (NB) classification method is discussed in this paper. To implement the molecular biology based Deoxyribonucleic acid (DNA) array concept in structural health monitoring, which has been demonstrated to be superior in disease detection, two types of array expression data have been proposed for the development of the SHM algorithm. For the micro-vibration mode, a two-tier auto-regression with exogenous (AR-ARX) process is used to extract the expression array from the recorded structural time history while an ARX process is applied for the analysis of the earthquake mode. The health condition of the structure is then determined using the NB classification method. In addition, the union concept in probability is used to improve the accuracy of the system. To verify the performance and reliability of the SHM algorithm, a downscaled eight-storey steel building located at the shaking table of the National Center for Research on Earthquake Engineering (NCREE) was used as the benchmark structure. The structural response from different damage levels and locations was collected and incorporated in the database to aid the structural health monitoring process. Preliminary verification has demonstrated that the structure health condition can be precisely detected by the proposed algorithm. To implement the developed SHM system in a practical application, a SHM prototype consisting of the input sensing module, the transmission module, and the SHM platform was developed. The vibration data were first measured by the deployed sensor, and subsequently the SHM mode corresponding to the desired excitation is chosen automatically to quickly evaluate the health condition of the structure. Test results from the ambient vibration and shaking table test showed that the condition and location of the benchmark structure damage can be successfully detected by the proposed SHM prototype system, and the information is instantaneously transmitted to a remote server to facilitate real-time monitoring. Implementing the bio-inspired two-mode SHM practically has been successfully demonstrated.
In the present study, we applied various machine learning techniques comparatively for prediction of subsurface structures based on multiple secondary information (i.e., well-logging data). The machine learning techniques employed in this study are Naive Bayes classification (NB), artificial neural network (ANN), support vector machine (SVM) and logistic regression classification (LR). As an alternative model, conventional hidden Markov model (HMM) and modified hidden Markov model (mHMM) are used where additional information of transition probability between primary properties is incorporated in the predictions. In the comparisons, 16 boreholes consisted with four different materials are synthesized, which show directional non-stationarity in upward and downward directions. Futhermore, two types of the secondary information that is statistically related to each material are generated. From the comparative analysis with various case studies, the accuracies of the techniques become degenerated with inclusion of additive errors and small amount of the training data. For HMM predictions, the conventional HMM shows the similar accuracies with the models that does not relies on transition probability. However, the mHMM consistently shows the highest prediction accuracy among the test cases, which can be attributed to the consideration of geological nature in the training of the model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.