• Title/Summary/Keyword: Naive Bayes Algorithm

Search Result 75, Processing Time 0.026 seconds

A novel classification approach based on Naïve Bayes for Twitter sentiment analysis

  • Song, Junseok;Kim, Kyung Tae;Lee, Byungjun;Kim, Sangyoung;Youn, Hee Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2996-3011
    • /
    • 2017
  • With rapid growth of web technology and dissemination of smart devices, social networking service(SNS) is widely used. As a result, huge amount of data are generated from SNS such as Twitter, and sentiment analysis of SNS data is very important for various applications and services. In the existing sentiment analysis based on the $Na{\ddot{i}}ve$ Bayes algorithm, a same number of attributes is usually employed to estimate the weight of each class. Moreover, uncountable and meaningless attributes are included. This results in decreased accuracy of sentiment analysis. In this paper two methods are proposed to resolve these issues, which reflect the difference of the number of positive words and negative words in calculating the weights, and eliminate insignificant words in the feature selection step using Multinomial $Na{\ddot{i}}ve$ Bayes(MNB) algorithm. Performance comparison demonstrates that the proposed scheme significantly increases the accuracy compared to the existing Multivariate Bernoulli $Na{\ddot{i}}ve$ Bayes(BNB) algorithm and MNB scheme.

An Automatic Document Classification with Bayesian Learning (베이지안 학습을 이용한 문서의 자동분류)

  • Kim, Jin-Sang;Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • As the number of online documents increases enormously with the expansion of information technology, the importance of automatic document classification is greatly enlarged. In this paper, an automatic document classification method is investigated and applied to UseNet 20 newsgroup articles to test its efficacy. The classification system uses Naive Bayes classification algorithm and the experimental result shows that a randomly selected newsgroup arcicle can be classified into its own category over 77% accuracy.

  • PDF

Preference Prediction System using Similarity Weight granted Bayesian estimated value and Associative User Clustering (베이지안 추정치가 부여된 유사도 가중치와 연관 사용자 군집을 이용한 선호도 예측 시스템)

  • 정경용;최성용;임기욱;이정현
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.316-325
    • /
    • 2003
  • A user preference prediction method using an exiting collaborative filtering technique has used the nearest-neighborhood method based on the user preference about items and has sought the user's similarity from the Pearson correlation coefficient. Therefore, it does not reflect any contents about items and also solve the problem of the sparsity. This study suggests the preference prediction system using the similarity weight granted Bayesian estimated value and the associative user clustering to complement problems of an exiting collaborative preference prediction method. This method suggested in this paper groups the user according to the Genre by using Association Rule Hypergraph Partitioning Algorithm and the new user is classified into one of these Genres by Naive Bayes classifier to slove the problem of sparsity in the collaborative filtering system. Besides, for get the similarity between users belonged to the classified genre and new users, this study allows the different estimated value to item which user vote through Naive Bayes learning. If the preference with estimated value is applied to the exiting Pearson correlation coefficient, it is able to promote the precision of the prediction by reducing the error of the prediction because of missing value. To estimate the performance of suggested method, the suggested method is compared with existing collaborative filtering techniques. As a result, the proposed method is efficient for improving the accuracy of prediction through solving problems of existing collaborative filtering techniques.

Data mining Algorithms for the Development of Sasang Type Diagnosis (사상체질 진단검사를 위한 데이터마이닝 알고리즘 연구)

  • Hong, Jin-Woo;Kim, Young-In;Park, So-Jung;Kim, Byoung-Chul;Eom, Il-Kyu;Hwang, Min-Woo;Shin, Sang-Woo;Kim, Byung-Joo;Kwon, Young-Kyu;Chae, Han
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.6
    • /
    • pp.1234-1240
    • /
    • 2009
  • This study was to compare the effectiveness and validity of various data-mining algorithm for Sasang type diagnostic test. We compared the sensitivity and specificity index of nine attribute selection and eleven class classification algorithms with 31 data-set characterizing Sasang typology and 10-fold validation methods installed in Waikato Environment Knowledge Analysis (WEKA). The highest classification validity score can be acquired as follows; 69.9 as Percentage Correctly Predicted index with Naive Bayes Classifier, 80 as sensitivity index with LWL/Tae-Eum type, 93.5 as specificity index with Naive Bayes Classifier/So-Eum type. The classification algorithm with highest PCP index of 69.62 after attribute selection was Naive Bayes Classifier. In this study we can find that the best-fit algorithm for traditional medicine is case sensitive and that characteristics of clinical circumstances, and data-mining algorithms and study purpose should be considered to get the highest validity even with the well defined data sets. It is also confirmed that we can't find one-fits-all algorithm and there should be many studies with trials and errors. This study will serve as a pivotal foundation for the development of medical instruments for Pattern Identification and Sasang type diagnosis on the basis of traditional Korean Medicine.

Traffic Classification Using Machine Learning Algorithms in Practical Network Monitoring Environments (실제 네트워크 모니터링 환경에서의 ML 알고리즘을 이용한 트래픽 분류)

  • Jung, Kwang-Bon;Choi, Mi-Jung;Kim, Myung-Sup;Won, Young-J.;Hong, James W.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.707-718
    • /
    • 2008
  • The methodology of classifying traffics is changing from payload based or port based to machine learning based in order to overcome the dynamic changes of application's characteristics. However, current state of traffic classification using machine learning (ML) algorithms is ongoing under the offline environment. Specifically, most of the current works provide results of traffic classification using cross validation as a test method. Also, they show classification results based on traffic flows. However, these traffic classification results are not useful for practical environments of the network traffic monitoring. This paper compares the classification results using cross validation with those of using split validation as the test method. Also, this paper compares the classification results based on flow to those based on bytes. We classify network traffics by using various feature sets and machine learning algorithms such as J48, REPTree, RBFNetwork, Multilayer perceptron, BayesNet, and NaiveBayes. In this paper, we find the best feature sets and the best ML algorithm for classifying traffics using the split validation.

Development of Supervised Machine Learning based Catalog Entry Classification and Recommendation System (지도학습 머신러닝 기반 카테고리 목록 분류 및 추천 시스템 구현)

  • Lee, Hyung-Woo
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • In the case of Domeggook B2B online shopping malls, it has a market share of over 70% with more than 2 million members and 800,000 items are sold per one day. However, since the same or similar items are stored and registered in different catalog entries, it is difficult for the buyer to search for items, and problems are also encountered in managing B2B large shopping malls. Therefore, in this study, we developed a catalog entry auto classification and recommendation system for products by using semi-supervised machine learning method based on previous huge shopping mall purchase information. Specifically, when the seller enters the item registration information in the form of natural language, KoNLPy morphological analysis process is performed, and the Naïve Bayes classification method is applied to implement a system that automatically recommends the most suitable catalog information for the article. As a result, it was possible to improve both the search speed and total sales of shopping mall by building accuracy in catalog entry efficiently.

Android Malware Detection Using Permission-Based Machine Learning Approach (머신러닝을 이용한 권한 기반 안드로이드 악성코드 탐지)

  • Kang, Seongeun;Long, Nguyen Vu;Jung, Souhwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.3
    • /
    • pp.617-623
    • /
    • 2018
  • This study focuses on detection of malicious code through AndroidManifest permissoion feature extracted based on Android static analysis. Features are built on the permissions of AndroidManifest, which can save resources and time for analysis. Malicious app detection model consisted of SVM (support vector machine), NB (Naive Bayes), Gradient Boosting Classifier (GBC) and Logistic Regression model which learned 1,500 normal apps and 500 malicious apps and 98% detection rate. In addition, malicious app family identification is implemented by multi-classifiers model using algorithm SVM, GPC (Gaussian Process Classifier) and GBC (Gradient Boosting Classifier). The learned family identification machine learning model identified 92% of malicious app families.

Algorithms for Classifying the Results at the Baccalaureate Exam-Comparative Analysis of Performances

  • Marcu, Daniela;Danubianu, Mirela;Barila, Adina;Simionescu, Corina
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.35-42
    • /
    • 2021
  • In the current context of digitalization of education, the use of modern methods and techniques of data analysis and processing in order to improve students' school results has a very important role. In our paper, we aimed to perform a comparative study of the classification performances of AdaBoost, SVM, Naive Bayes, Neural Network and kNN algorithms to classify the results obtained at the Baccalaureate by students from a college in Suceava, during 2012-2019. To evaluate the results we used the metrics: AUC, CA, F1, Precision and Recall. The AdaBoost algorithm achieves incredible performance for classifying the results into two categories: promoted / rejected. Next in terms of performance is Naive Bayes with a score of 0.999 for the AUC metric. The Neural Network and kNN algorithms obtain scores of 0.998 and 0.996 for AUC, respectively. SVM shows poorer performance with the score 0.987 for AUC. With the help of the HeatMap and DataTable visualization tools we identified possible correlations between classification results and some characteristics of data.

Feature Extraction of Web Document using Association Word Mining (연관 단어 마이닝을 사용한 웹문서의 특징 추출)

  • 고수정;최준혁;이정현
    • Journal of KIISE:Databases
    • /
    • v.30 no.4
    • /
    • pp.351-361
    • /
    • 2003
  • The previous studies to extract features for document through word association have the problems of updating profiles periodically, dealing with noun phrases, and calculating the probability for indices. We propose more effective feature extraction method which is using association word mining. The association word mining method, by using Apriori algorithm, represents a feature for document as not single words but association-word-vectors. Association words extracted from document by Apriori algorithm depend on confidence, support, and the number of composed words. This paper proposes an effective method to determine confidence, support, and the number of words composing association words. Since the feature extraction method using association word mining does not use the profile, it need not update the profile, and automatically generates noun phrase by using confidence and support at Apriori algorithm without calculating the probability for index. We apply the proposed method to document classification using Naive Bayes classifier, and compare it with methods of information gain and TFㆍIDF. Besides, we compare the method proposed in this paper with document classification methods using index association and word association based on the model of probability, respectively.

Prediction of Citizens' Emotions on Home Mortgage Rates Using Machine Learning Algorithms (기계학습 알고리즘을 이용한 주택 모기지 금리에 대한 시민들의 감정예측)

  • Kim, Yun-Ki
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.1
    • /
    • pp.65-84
    • /
    • 2019
  • This study attempted to predict citizens' emotions regarding mortgage rates using machine learning algorithms. To accomplish the research purpose, I reviewed the related literature and then set up two research questions. To find the answers to the research questions, I classified emotions according to Akman's classification and then predicted citizens' emotions on mortgage rates using six machine learning algorithms. The results showed that AdaBoost was the best classifier in all evaluation categories. However, the performance level of Naive Bayes was found to be lower than those of other classifiers. Also, this study conducted a ROC analysis to identify which classifier predicts each emotion category well. The results demonstrated that AdaBoost was the best predictor of the residents' emotions on home mortgage rates in all emotion categories. However, in the sadness class, the performance levels of the six algorithms used in this study were much lower than those in the other emotion categories.