• 제목/요약/키워드: Naemorhedus caudatus

검색결과 26건 처리시간 0.029초

한국의 산양(우제목, 소과)의 미토콘드리아 Cytochrome b 염기서열 다양성 (Sequence Diversity of Mitochondrial Cytochrome b Gene in Grey Goral Naemorhedus caudatus(Artiodactyla, Bovidae) from Korea)

  • Koh, Hung-Sun;Yang, Byong-Guk;Lee, Bae-Kun;Lee, Jong-Hyong
    • Animal Systematics, Evolution and Diversity
    • /
    • 제18권1호
    • /
    • pp.13-21
    • /
    • 2002
  • 한국의 산양 (Naemorhedus caudatus)의 유전정보를 종보전에 활용하기 위하여, 한국의 2개 장소에서 채집한 6마리의 미토콘드리아 cytochrome b 유전자 염기서열(606 bp)의 양상을 조사하였다 상응하는 중국의 산양의 염기서열은 GenBank에서 얻어서 이용하였다. 한국의 산양의 4개 haplotype의 각각과 중국의 산양의 한 haplotype간의 nucleotide Tamura-Nei 거리는 0.0650부터 0.0803 가지의 변이를 보였으며, 산양은 소과 내에서 높은 수준의 염기서열 다양성을 나타냈다 한국의 산양에서, 양구표본의 3개 haplotype간의 거리는 0.0151부터 0.0185로, 양구집단의 유전자 다양성이 낮은 수준으로 감소되었음을 보여준다. 또한 양구의 3개 haplotype의 각각과 삼척의 한 haplotype간의 거리는 0.0343에서 0.0479였다. 지리적 거리의 멀어짐에 따르는 유전자 거리의 증가가 서식처 단절에 의해 야기되었다고 판단됨으로, 한국의 산양의 유전자 다양성의 감소를 막기 위한 여러 가지 보전 대책이 즉각적으로 수행되어야 할 것이다 산양의 분류학적 검토를 위하여 GenBank에 있는 히말라야산양 (N. goral)의 염기서열 (276 bp)도 이용하였으며, 산양은 히말라야산양과 뚜렷한 차이가 없었다. 산양과 히말라야 산양은 동종으로 판단할 수가 있지만, 두 종의 보다 많은 표본을 이용한 후속 연구가 필요하다

Simple Assessment of Taxonomic Status and Genetic Diversity of Korean Long-Tailed Goral (Naemorhedus caudatus) Based on Partial Mitochondrial Cytochrome b Gene Using Non-Invasive Fecal Samples

  • Kim, Baek-Jun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제2권1호
    • /
    • pp.32-41
    • /
    • 2021
  • South Korea presently harbors less than 800 long-tailed gorals (Naemorhedus caudatus), an endangered species. I report for the first time on the taxonomic status and genetic diversity of the Korean species using non-invasive fecal sampling based on mitochondrial cytochrome b gene sequence analyses. To determine the taxonomic status of this species, I reconstructed a consensus neighbor-joining tree and generated a minimum spanning network combining haplotype sequences obtained from feces with a new goral-specific primer set developed using known sequences of the Korean goral and related species (e.g., Russian goral, Chinese goral, Himalayan goral, Japanese serow, etc.). I also examined the genetic diversity of this species. The Korean goral showed only three different haplotypes. The phylogenetic tree and parsimony haplotype network revealed a single cluster of Korean and Russian gorals, separate from related species. Generally, the Korean goral has a relatively low genetic diversity compared with that of other ungulate species (e.g., moose and red deer). I preliminarily showcased the application of non-invasive fecal sampling to the study of genetic characteristics, including the taxonomic status and genetic diversity of gorals, based on mitochondrial DNA. More phylogenetic studies are necessary to ensure the conservation of goral populations throughout South Korea.

Cerebral Coenurosis of a Long-Tailed Goral, Naemorhedus caudatus, in Korea

  • Ahn, Sangjin;Oh, Hyeongseok;Choi, Soo-Young;Kim, Jong-Taek;Kim, Hyeon-Cheol
    • Parasites, Hosts and Diseases
    • /
    • 제59권1호
    • /
    • pp.55-59
    • /
    • 2021
  • We intended to describe a case of cerebral coenurosis in a long-tailed goral, Naemorhedus caudatus, from Hwacheon-gun, Gangwon-do (Province), in the Korea. The goral, a 10-year-old male, was suffering from neurological symptoms, such as turning the circle to one side without lifting the head straight, and died at 30 days after admission to the wildlife medical rescue center in Chuncheon-si, Gangwon-do. A fluid-filled cyst was detected in the left cerebral hemisphere by computed tomography and magnetic resonance imaging. The cyst removed from the deceased goral was transparent, about 3×3 cm in size, contained a clear fluid and approximately 320 protoscolices invaginating from the internal germinal layer. The protoscolex had 4 suckers and a rostellum with 28 hooklets arranged in 2 rows. By the present study, a case of cerebral coenurosis was first confirmed in a long-tailed goral, N. caudatus, from Gangwon-do, in Korea. The residents frequently exposed in the sylvatic environment should be careful the accidental infections of zoonotic metacestode of Taenia multiceps, Coenurus cerebralis, in Korea.

Two Cases of Mange Mite (Sarcoptes scabiei) Infestation in Long-Tailed Goral (Naemorhedus caudatus) in Republic of Korea

  • Da Som, Park;Jin, Choi;Hee-Jong, Kim;Jin-Yong, Kim;Min-Han, Kim;Jin-Young, Lee;Jeong Chan, Moon;Hee-Bok, Park;KyungMin, Park;Jun Hee, Yun;Yeonsu, Oh;Seongjun, Choe;Ki-Jeong, Na;Jongmin, Yoon
    • Parasites, Hosts and Diseases
    • /
    • 제60권6호
    • /
    • pp.423-427
    • /
    • 2022
  • The long-tailed goral, Naemorhedus caudatus (Mammalia: Bovidae), is one of the endangered animals in the Republic of Korea (Korea). Sarcoptic mange mites infested in diverse species of mammals, including humans, but no case has been reported in long-tailed gorals. We report 2 cases of mange mite, Sarcoptes scabiei, infestation in longtailed gorals. Mange mites were sampled in the skin legions of the 2 long-tailed gorals, which were rescued in 2 different regions, Uljin-gun, Gyeongsangbuk-do and Cheorwon-gun, Gangwon-do, Korea. Our results showed that the ectoparasite was the itch mite that burrowed into skin and caused scabies on the morphological inspection and placed within the phylogenetic relations of the species. The present study confirmed for the first time in Korea that mange mites are pathogenic scabies of long-tailed goral. Closer surveillance of this pathogenic ectoparasite in zoonotic and infectious ecosystems is warranted.

Camera Trapping of Long-Tailed Goral (Naemorhedus caudatus) in BaekAm and Geumjong Mountains, South Korea

  • Park, Hee Bok;Han, Chang Wook;Hong, Sungwon
    • Journal of Forest and Environmental Science
    • /
    • 제34권1호
    • /
    • pp.71-76
    • /
    • 2018
  • The long-tailed goral (Naemorhedus caudatus) has slowly recolonized habitats in South Korea. Because it is necessary to know the status of groups in recolonized areas, we determined detection frequencies and group sizes using camera trapping, a non-invasive monitoring method. In Uljin, a far southern goral habitat in South Korea, we used a Moultrie 5.0 camera and mineral block as bait during the breeding season in BaekAm Mountain (148 days, 18 May to 11 October) and Geumjong Mountain (63 days, 18 May to 18 July) in 2010. Totally, 155 images were captured in BaekAm Mountain, whereas four images were captured in Geumjong Mountain. The species was most frequently detected at sunrise (05:00-08:00) and sunset (18:00-20:00). Through population structure evaluation, we identified at least 11 individuals, including one solitary mature male, four females, four kids, and two solitary subadults in BaekAm Mountain. However, in Geumjong Mountain, we identified only two individuals (female with kid). Monitoring efficiency in the recolonized area differed depending on population density and habitat conditions. Because we could evaluate the population structure, and behavioral patterns in the study sites, monitoring using camera traps could be applied for the recolonized habitats in South Korea.

Cross-Sectional and Skeletal Anatomy of Long-tailed Gorals (Naemorhedus caudatus) Using Imaging Evaluations

  • Sangjin Ahn;Woojin Shin;Yujin Han;Sohwon Bae;Cheaun Cho ;Sooyoung Choi;Jong-Taek Kim
    • Journal of Veterinary Science
    • /
    • 제24권4호
    • /
    • pp.60.1-60.8
    • /
    • 2023
  • Background: Accurate diagnosis of diseases in animals is crucial for their treatment, and imaging evaluations such as radiographs, computed tomography (CT), and magnetic resonance imaging (MRI) are important tools for this purpose. However, a cross-sectional anatomical atlas of normal skeletal and internal organs of long-tailed gorals (Naemorhedus caudatus) has not yet been prepared for diagnosing their diseases. Objectives: The objective of this study was to create an anatomical atlas of gorals using CT and MRI, which are imaging techniques that have not been extensively studied in this type of wild animal in Korea. Methods: The researchers used CT and MRI to create an anatomical atlas of gorals, and selected 37 cross-sections from the head, thoracic, lumbar, and sacrum parts of gorals to produce an average cross-sectional anatomy atlas. Results: This study successfully created an anatomical atlas of gorals using CT and MRI. Conclusions: The atlas provides valuable information for the diagnosis of diseases in gorals, which can improve their treatment and welfare. The study highlights the importance of developing cross-sectional anatomical atlases of gorals to diagnose and treat their diseases effectively.