DOI QR코드

DOI QR Code

Two Cases of Mange Mite (Sarcoptes scabiei) Infestation in Long-Tailed Goral (Naemorhedus caudatus) in Republic of Korea

  • Da Som, Park (Research Center for Endangered Species, National Institute of Ecology) ;
  • Jin, Choi (Research Center for Endangered Species, National Institute of Ecology) ;
  • Hee-Jong, Kim (Research Center for Endangered Species, National Institute of Ecology) ;
  • Jin-Yong, Kim (Research Center for Endangered Species, National Institute of Ecology) ;
  • Min-Han, Kim (Research Center for Endangered Species, National Institute of Ecology) ;
  • Jin-Young, Lee (Research Center for Endangered Species, National Institute of Ecology) ;
  • Jeong Chan, Moon (Research Center for Endangered Species, National Institute of Ecology) ;
  • Hee-Bok, Park (Research Center for Endangered Species, National Institute of Ecology) ;
  • KyungMin, Park (Research Center for Endangered Species, National Institute of Ecology) ;
  • Jun Hee, Yun (Research Center for Endangered Species, National Institute of Ecology) ;
  • Yeonsu, Oh (Laboratory of Veterinary Pathology, College of Veterinary Medicine, Kangwon National University) ;
  • Seongjun, Choe (Department of Parasitology, School of Medicine, Chungbuk National University) ;
  • Ki-Jeong, Na (Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University) ;
  • Jongmin, Yoon (Research Center for Endangered Species, National Institute of Ecology)
  • Received : 2022.06.07
  • Accepted : 2022.11.27
  • Published : 2022.12.31

Abstract

The long-tailed goral, Naemorhedus caudatus (Mammalia: Bovidae), is one of the endangered animals in the Republic of Korea (Korea). Sarcoptic mange mites infested in diverse species of mammals, including humans, but no case has been reported in long-tailed gorals. We report 2 cases of mange mite, Sarcoptes scabiei, infestation in longtailed gorals. Mange mites were sampled in the skin legions of the 2 long-tailed gorals, which were rescued in 2 different regions, Uljin-gun, Gyeongsangbuk-do and Cheorwon-gun, Gangwon-do, Korea. Our results showed that the ectoparasite was the itch mite that burrowed into skin and caused scabies on the morphological inspection and placed within the phylogenetic relations of the species. The present study confirmed for the first time in Korea that mange mites are pathogenic scabies of long-tailed goral. Closer surveillance of this pathogenic ectoparasite in zoonotic and infectious ecosystems is warranted.

Keywords

Acknowledgement

This work was supported by a grant from the National Institute of Ecology, funded by the Ministry of Environment of the Republic of Korea (NIE-B-2022-45).

References

  1. Bragina E, Kim S, Zaumyslova O, Park YS, Lee W. Naemorhedus caudatus. The IUCN Red List of Threatened Species 2020; e.T14295A22150540. https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T14295A22150540.EN
  2. Won PH. The Illustrated Encyclopedia of Fauna and Flora of Korea. Vol. 7. Mammals. Minister of Education. Seoul, Korea. 1967, pp 59-65 (in Korea).
  3. Yang BG. Systematics, ecology and current population status of the goral, Naemorhedus caudatus, in Korea. Ph.D. Dissertation. Chungbuk National University; 2002; 67-78.
  4. Arlian LG, Morgan MS. A review of Sarcoptes scabiei: past, present and future. Parasite Vector 2017; 10: 297. https://doi.org/10.1186/s13071-017-2234-1
  5. Bornstein S, Morner T, Samuel WM. Sarcoptes scabiei and sarcoptic mange. In Samuel WM, Pybus MJ, Kocan AA eds, Parasitic Diseases of Wild Mammals. 2nd ed. Iowa State University Press. Ames, USA. 2001, pp 107-119. https://doi.org/10.1002/9780470377000.ch5
  6. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  7. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
  8. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10: 512-526. https://doi.org/10.1093/oxfordjournals.molbev.a040023
  9. Andriantsoanirina V, Ariey F, Izri A, Bernigaud C, Fang F, Charrel R, Foulet F, Botterel F, Guillot J, Chosidow O, Durand R. Sarcoptes scabiei mites in humans are distributed into three genetically distinct clades. Clin Microbiol Infec 2015; 21: 1107-1114. https://doi.org/10.2016/j.cmi.2015.08.002
  10. Eo KY, Kwon OD, Shin NS, Shin T, Kwak D. Sarcoptic mange in wild raccoon dogs (Nyctereutes procyonoides) in Korea. J Zoo Wildlife Med 2008; 39: 671-673. https://doi.org/10.1638/2008-0034.1
  11. Hyun JE, Jang HK, Hwang CY, Yeon SC. Clinical efficacy of orally administered fluralaner for treatment of scabies in six freerearing raccoon dogs (Nyctereutes procyonoides). Vet Dermatol 2019; 30: 267-e81. https://doi.org/10.1111/vde.12741
  12. Yoon SS, Byun JW, Yang DK, Shin YK, Wee SH, Kim B. Prevalence of canine scabies in Korean stray dogs. Korean J Vet Res 2010; 50: 165-169 (in Korean).
  13. Fraser TA, Charleston M, Martin A, Polkinghorne A, Carver S. The emergence of sarcoptic mange in Australian wildlife: an unresolved debate. Parasite Vector 2016; 9: 316. https://doi.org/10.1186/s13071-016-1578-2
  14. Hwang J, Lee K, Kim YJ, Sleeman JM, Lee H. Retrospective analysis of the epidemiologic literature, 1990-2015, on wildlife-associated diseases from the Republic of Korea. J Wildl Dis 2017; 53: 5-18. https://doi.org/10.7589/2015-12-348
  15. Sugiura N, Doi K, Kato T, Morita T, Hayama SI. Epizootic of sarcoptic mange in raccoon dogs (Nyctereutes procyonoides) in relation to population density. J Vet Med Sci 2018; 80: 544-548. https://doi.org/10.1292/jvms.17-0092
  16. Oleaga A, Casais R, Prieto JM, Gortazar, Balseiro A. Comparative pathological and immunohistochemical features of sarcoptic mange in five sympatric wildlife species in Northern Spain. Eur J Wildl Res 2012; 58: 997-1000. https://doi.org/10.1007/s10344-012-0662-y
  17. Acevedo P, Cassinello J. Biology, ecology and status of Iberian ibex Capra pyrenaica: a critical review on research prospects. Mammal Rev 2009; 39: 17-32. https://doi.org/10.1111/j.1365-2907.2008.00138.x
  18. Perez JM, Meneguz PG, Dematteis A, Rossi L. Parasites and conservation biology: the 'ibex-ecosystem'. Biodivers Conserv 2006; 15: 2033-2047. https://doi.org/10.1007/s10531-005-0773-9
  19. Perez JM, Granados JE, Espinosa J, Raez-Bravo A, Lopez-Olvera JR, Rossi L, Meneguz PG, Angelone S, Fandos P, Soriguer RC. Biology and management of sarcoptic mange in wild Caprinae populations. Mammal Rev 2020; 51: 82-94. https://doi.org/10.1111/mam.12213
  20. Iacopelli F, Fanelli A, Tizzani P, Berriatua E, Prieto P, MartinezCarrasco C, Leon L, Rossi L, Candela MG. Spatio-temporal patterns of sarcoptic mange in red deer and Iberian ibex in a multiple-host natural park. Res Vet Sci 2020; 128: 224-229. https://doi.org/10.1016/j.rvsc.2019.11.014
  21. Espinosa J, Lopez-Olvera J, Cano-Manuel FJ, Fandos P, Perez JM, Lopez-Graells C, Raez-Bravo A, Mentaberre G, Romero D, Soriguer RC, Granados JE. Guidelines for managing captive Iberian ibex herds for conservation purposes. J Nat Cons 2017; 40: 24-32. https://doi.org/10.1016/J.JNC.2017.09.002