• Title/Summary/Keyword: NaOH activation

Search Result 140, Processing Time 0.022 seconds

A Study on the Weight Reduction of PET Microfibre Treated with Sodium Diethylene Glycolate (SDEG) (Sodium Diethylene Glycolate (SDEG)에 의한 Polyester 신합섬직물의 감량가공에 관한 연구)

  • Lee, Joo-Hyoung;Kim, Sam-Soo;Huh, Man-Woo;Yoon, Jong-Ho;Cho, Yong-Suk
    • Textile Coloration and Finishing
    • /
    • v.8 no.3
    • /
    • pp.36-51
    • /
    • 1996
  • In order to investigate the degradation behavior of PET fabrics, sodium diethylene glycolate (SDEG)-diethylene glycol (DEG) solutions were prepared and PET fabrics were treated in the solution. The dissolution rate constant and apparent activation energy of the PET fabrics were calculated by Eyring's and Arrhenius's equation respectively and measured dyeing properties, moisture and antistatic properties. Then compared SDEG-treated fabrics with NaOH-treated. The results were as follows; 1. PET fabrics decreased their weight in SDEG-DEG solution, and the decreasing rate showed a linear relationship to the treating time at constant temperature and concentration of SDEG-DEG solution. 2. The dissolution rate constant showed a linear relationship to the concentration of SDEGDEG solution and an exponential relationship to treating temperature. 3. Apparent activation energy of dissolution was 23.45 kcal/mol. 4. The K/S values and the ΔL values of fabrics treated with SDEG-DEG solution are higher and lower respectively than fabrics treated with NaOH. 5. SDEG-DEG solution treatment improved fabric's moisture regain and it reached almost maximum at about 40% weight loss. 6. In the both reagent the light, wet and sublimation fastness of fabrics are similar. 7. SDEG-DEG solution gave more electrical discharge effect to the fabrics than that of NaOH. 8. NaOH treated PET microfiber have crater-like surface, while SDEG-DEG solution give bathochromic effect to the PET microfiber because which has wrinkles on the surface.

  • PDF

A Study on Development of Activated Carbons from Waste Timbers (폐벌목(廢伐木)을 이용(利用)한 활성탄(活性炭) 개발(開發)에 관(關)한 연구(硏究))

  • Kim, Jong-Moon;Chung, Chan-Kyo;Min, Byong-Hoon
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.68-78
    • /
    • 2008
  • Using a Pinus koraiensis and Pinus rigida which are normally being discarded in South Korea, optimal conditions of producing activated carbons have been studied to recycle as a higher value-added product. This study consists of two processes, the production process of charcoals from waste timbers by low temperature pyrolysis and the production process of activated carbons from the charcoals by chemical activation reaction. This paper deals with the production process of activated carbons from the charcoals by chemical activation reaction. As an alkali has been generally used as an activating agent, KOH and NaOH which react well with a carbon were used in this study. As a result of the experiments, it is confirmed that activated carbons made with KOH treatment had superior values in physicochemical properties to NaOH, showing that there was no remain of KOH at the surface of the charcoals while there was $3{\sim}4%$ of NaOH remaining after the experiments. Thus, it is concluded that KOH reacted more actively with a charcoal than NaOH. Moreover, it was also found that values in physicochemical properties when using a Pinus koraiensis are superior to the ones when using a Pinus rigida. The optimal mixing ratio of an activating agent to a charcoal was 400 wt.%. To improve the physicochemical properties, activated carbons were washed out by distilled water after neutralization with SM hydrochloric acid solution. When activated carbons were produced from a Pinus koraiensis in this optimal conditions, value of BET surface area was found to be approx. $2400\;m^2/g$.

Electrochemical characteristics of active carbon prepared by chemical activation for anode of lithium ion battery (이차전지 음극용 화학적 활성화법으로 제조된 활성탄의 전기화학적 특성)

  • Lee, Ho-Yong;Kim, Tae-Yeong;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.480-487
    • /
    • 2015
  • In this study, several kinds of active carbons with high specific surface area and micro pore structure were prepared from the coconut shell charcoal using chemical activation method. The physical property of prepared active carbon was investigated by experimental variables such as activating chemical agents to char coal ratio, flow rate of inert gas and temperature. It was shown that chemical activation with KOH and NaOH was successfully able to make active carbons with high surface area of $1900{\sim}2500m^2/g$ and mean pore size of 1.85~2.32 nm. The coin cell using water-based binder in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC:DMC:EMC=1:1:1 vol%) showed better capacity than that of oil-based binder. Also, it was found that the coin cell of water-based binder shows an improved cycling performance and coulombic efficiency.

Synthesis of Low-Priced Catalyst from Coal Fly Ash for Pyrolysis of Waste Low Density Polyethylene (석탄비산재(石炭飛散災)로부터 저밀도(低密度) 폴리에틸렌 폐기물(廢棄物) 열분해용(熱分解用) 저가(低價) 촉매(觸媒) 합성(合成))

  • Jeong, Byung-Hwan;Na, Jeong-Geol;Kim, Sang-Guk;Mo, Se-Young;Chung, Soo-Hyun
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.48-55
    • /
    • 2007
  • A low-priced catalyst for pyrolysis of LDPE has been synthesized. Fly ash, which is waste material generated from coal-fired power plants was used as silica and alumna sources for solid acid catalyst. Amorphous silica-alumina catalysts (FSAs) were pre-pared by dissolution of silica and alumina from fly ash, followed by co-precipitation of the dissoluted ions. A series of LDPE pyrolysis were carried out in a thermogravimetric analyzer to investigate the effects of synthesis conditions such as NaOH/fly ash weight ratio and activation time one catalytic performance of FSAs. The physical properties of FSAs were examined and related to their catalytic performances. FSA(1.2-8) synthesized with NaOH/fly ash weight ratio of 1.2 and the activation time of 8 hours showed the best catalytic performance. The catalytic performance of FSA(1.2-8) was comparable with that of commercial catalysts and it was concluded that the FSA could be a good candidate for catalytic use in the recycling of waste polyolefins.

Preliminary Study for the Development of Alkali Activated Natural Hwangtoh Binder (알칼리활성 천연황토 결합제 개발을 위한 기초연구)

  • Kim, Baek-Joong;Kim, Jun-Hwan;Yi, Chong-Ku;Kang, Kyung-In
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.389-390
    • /
    • 2010
  • this study is preliminary experimental research for develop methods to utilize the natural Hwangtoh as replacement materials for the cement in concrete, via alkali activation at $60^{\circ}C$ using NaOH solution and liquefied $Na_2SiO_3$ in a manufacture process of Hwangtoh concrete binder.

  • PDF

A Study on the Development of Activated Carbons from Sewage Sludge (하수슬러지를 이용한 활성탄 개발에 관한 연구)

  • Lee, Taek-Ryong;Chung, Chan-Kyo;Joe, Young-Cheon
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.31-37
    • /
    • 2009
  • This study deals with the production process of activated carbons from the sewage sludge char by chemical activation reaction. KOH and NaOH were used as activating agents, which react well with carbon. From the experiments, it was found that activated carbons made with KOH treatment had better physicochemical properties in terms of iodine number and BET value than those made with NaOH treatment. It was also found that the optimal deposition ratio of an activating agent to the sewage sludge char was 75 wt% of KOH and 50 wt% of NaOH. Activated carbons were washed out by distilled water after neutralization with 5 M hydrochloric acid solution. The activated carbons that were produced from a sewage sludge char at this optimal conditions have BET surface areas of approximately $600m^2/g$.

Generation of Hydrogen from Hydrolysis Reaction of NaBH4 Using Sea Water (바닷물을 이용한 NaBH4 가수분해에 의한 수소발생)

  • Lee, Daewoong;Oh, Sohyeong;Kim, Junseong;Kim, Dongho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.758-762
    • /
    • 2019
  • Sodium borohydride,$NaBH_4$, has many advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFC). When PEMFC is used for marine use, $NaBH_4$ hydrolysis using seawater is economical. Therefore, in this study, hydrogen was generated by using seawater instead of distilled water in the process of hydrolysis of $NaBH_4$. Properties of $NaBH_4$ hydrolysis reaction using activated carbon supported Co-B/C catalyst were studied. The yield of hydrogen decreased as $NaBH_4$ concentration and NaOH concentration were increased during $NaBH_4$ hydrolysis using sea water. At higher concentrations of $NaBH_4$ and NaOH, byproducts adhered to the surface of the catalyst after hydrolysis reaction using sea water, reduced hydrogen yield compared to distilled water. The activation energy of $NaBH_4$ hydrolysis is 59.3, 74.4 kJ/mol for distilled water and sea water, respectively. In order to increase the hydrogen generation rate in seawater as high as distilled water, the reaction temperature has to be increased by $80^{\circ}C$ or more.

Effect of corrosion environment on the SCC of Al-brass tube for vessel (선박용 Al-황동세관의 SCC에 미치는 부식환경의 영향)

  • 임우조;정해규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.291-297
    • /
    • 2003
  • Al-brass is usually used as the tube material of vessel's heat exchanger for seawater cooling system because it has high thermal conductivity and good mechanical properties and high corrosion resistance due to cuprous oxide (Cu20) layer against seawater. However, Al-brass tubes of heat exchanger for vessel at the actual environment is reported that local corrosion such as stress corrosion cracking occurred by synergism effect between mechanical factor and corrosion environment In this paper, the effect of corrosion environment on the stress corrosion cracking of Al-brass in various NH4OH of 3.5% NaCl solution, under flow by constant displacement tester. Based on the test results, the behavior of polarization, stress corrosion crack propagation and dezincification phenomenon of Al-brass are investigated. The main results are as follows:(1) Increasing range of potential from open circuit potential to repassivation gets lower, as the contain rate of NH4OH gets higher. (2) As contain rate of NH4OH gets higher, SCC of Al-brass is become activation but the protection film(Cu20) of Al-brass is created in 3.5% NaCl solution. (3) According as content of NH4OH increases in 3.5% NaCl solution, the dezincifiction area is spread. It is concluded that dezincification occurred by localized preferential anodic dissolution at stress focusing region.

Activation Property of Blast furnace Slag by Alkaline Activator (알칼리 자극제에 의한 고로수쇄슬래그의 활성화 특성)

  • Ahn, Ji-Whan;Cho, Jin-Sang;Kim, Hyung-Seok;Han, Gi-Chun;Han, Ki-Suk;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.1005-1014
    • /
    • 2003
  • This paper examines the hydration and physical properties of alkali-blast furnace slag cement activated by Na$_2$SiO$_3$, Na$_2$CO$_3$, NaOH, Na$_2$SO$_4$. Four levels of Na$_2$O content in mixtures, 1, 3, 5, and 7 wt%, were investigated, and a W/S ratio 0.5 was used to prepare paste and mortar specimens. Compressive strength measurement of mortars was carried out adding alkali activated slag 30 wt% to OPC. The main hydration products with alkali activator kinds were C-S-H,C$_4$AH$\_$13/, AFt and Al(OH)$_3$ etc. For using Na$_2$CO$_3$ activated slag, hydration ratio of slag was higher than that of different activators, and Na$_2$SO$_4$ activated slag mortar appeared the highest compressive strength values at 28 days with activator content of 5 and 7 wt%.

Solvent Effect on Stress Relaxation of PET Filament Fibers and Self Diffusion of Crystallites

  • Nam Jeong Kim;Eung Ryul Kim;Sang Joon Hahn
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.468-473
    • /
    • 1991
  • Viscoelastic properties of PET filament fibers on stress relaxation were investigated in the solvents of $H_2$O, 0.05% NaOH and 50% DMF using an Instron (UTM4-100 Tensilon) with solvent chamber. The theoretical stress relaxation equation derived by applying the Ree-Eyring's hyperbolic sine law to dashpot of three element non-Newtonian model was applied to the experimental stress relaxation curves, and the model parameters $G_1,G_2$, ${\alpha}$ and ${\beta}$ were obtained. By analyzing temperature dependency of the relaxation time, the values of activation entropy, activation enthalpy and activation free energy for flow in PET filament fiber were evaluated, the activation free energy being about 25.7 kcal/mol. The self diffusion coefficient and hole distance were obtained from parameters ${\alpha}$, ${\beta}$ and crystallite size in order to study the self diffusion and the orientation of crystallites in amorphous region and the effect of solvent.