• Title/Summary/Keyword: NaOCl cleaning

Search Result 30, Processing Time 0.029 seconds

Characterization of Membrane Fouling and It's Optimal Chemical Cleaning Method in MF Process using D dam water (D댐수를 이용한 정밀여과 공정에서 막오염 특성 및 최적 화학세정방법 조사)

  • Kim, Chung H.;Lim, Jae L.;Lee, Byung G.;Chae, Seon H.;Park, Min G.;Park, Sang H.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.559-569
    • /
    • 2007
  • The purposes of this study were to find the main foulant of membrane and the optimal chemical cleaning method for MF(microfiltration) drinking water treatment system using D dam water as water source. The MF pilot plant which can treat maximum $500m^3/d$ consisted of 3 racks and was operated for 10 months under various operation conditions. After 10 months operation, $1^{st}$ and $2^{nd}$ rack of membrane pilot plant system were cleaned chemically and the degree of the restoration of the fouled membrane in terms of the pure water flux was detemnined. Inorganic compounds which contained in chemical cleaning waste was analyzed by Inductively Coupled Plasma (ICP). One membrane module for 3rd rack was disjointed and membrane fouling materials, especially inorganic compounds were investigated by Electron Probe Microanlysis (EPMA) to elucidate the reason of TMP increase. And also, the various chemical reagents (1N HCl or $H_2SO_4$, oxalic acid as acid and 0.3% NaOCl as alkali) were tested by combination of acid and alkali to determine the optimal chemical cleaning method for the MF system using micro-modules manufactured using the disjointed module. It was verified that the inside and outside of membrane module was colorized with black. As a result of the quantitative and semi-qualitative analysis of membrane foulant by ICP, most of inorganic foulant was manganese which is hard to remove by inorganic acid such as HCI. Especially, it was observed by EPMA that Mn was attached more seriously in inside surface of membrane than in outside surface of that. It was supposed that Mn fouling in inside surface of membrane might be caused by the oxidation of soluble manganese (Mn(II)) to insoluble manganese ($MnO_2$) by chlorine containing in backwashing water. The optimal cleaning method for the removal of manganese fouling was consecutive cleaning with the mixture of 1N HCl and 1% of oxalic acid, 0.3% NaOCl, and 1N HCl showing 91% of the restoration of the fouled membrane.

Evaluation of Chemical Resistance and Cleaning Efficiency Characteristics of Multi bore PSf Hollow Fiber Membrane (Multi-bore PSf 중공사막의 내화학성 및 세척 효율 특성평가)

  • Im, Kwang Seop;Kim, Tae Han;Jang, Jae Young;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.138-148
    • /
    • 2020
  • The purpose of this study was to identify the cleaning efficiency of fouled multi-bore hollow fiber membranes after purification of contaminated water. The PSf (polysulfone) based hollow fiber membrane manufactured by Pure & B Tech Co., Ltd. Was used in this study. The antifouling characteristics during the water treatment were studied using bovine serum albumin (BSA) as a model compound and the chemical resistance was evaluated after long-term impregnation in sodium hypochlorite (NaOCl) solution and Citric acid to understand the long term stability of the membranes. Water permeability and mechanical strength of the membranes after prolonged chemical exposure was measured to observe the change in mechanical stability and long term performance of the membrane. moreover, the recovery efficiency was also evaluated after chemical enhanced backwashing of a membrane contaminated with bovine serum albumin. The PSf hollow fiber membrane exhibited excellent chemical resistance, and it was confirmed that the efficiency of sodium hypochlorite was high as a result of chemical enhanced backwashing.

Efficacy of reciprocating and rotary retreatment nickel-titanium file systems for removing filling materials with a complementary cleaning method in oval canals

  • Said Dhaimy;Hyeon-Cheol Kim;Lamyae Bedida;Imane Benkiran
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.13.1-13.9
    • /
    • 2021
  • Objectives: This study aimed to evaluate and compare the efficacy of the S1 reciprocating system and the D-Race retreatment rotary system for filling material removal and the apical extrusion of debris. Materials and Methods: Sixty-four freshly extracted maxillary canines were shaped with size 10 and size 15 K-files, instrumented using ProTaper Gold under irrigation with 2.5% sodium hypochlorite (NaOCl), obturated according to the principle of thermo-mechanical condensation with gutta-percha and zinc oxide eugenol sealer, and allowed to set for 3 weeks at 37℃. Subsequently, the teeth were divided into a control group (n = 4), the D-Race rotary instrument group (n = 30), and the S1 reciprocating instrument group (n = 30). After classical retreatment, the canals were subjected to a complementary approach with the XP-Endo Shaper. Desocclusol was used as a solvent, and irrigation with 2.5% NaOCl was performed. Each group was divided into subgroups according to the timing of radiographic readings. The images were imported into a software program to measure the remaining filling material, the apical extrusion, and the root canal space. The data were statistically analyzed using the Z-test and JASP graphics software. Results: No significant differences were found between the D-Race and S1 groups for primary retreatment; however, using a complementary cleaning method increased the removal of remnant filling (p < 0.05). Conclusions: Classical removal of canal filling material may not be sufficient for root canal disinfection, although a complementary finishing approach improved the results. Nevertheless, all systems left some debris and caused apical extrusion.

Development of Submerged Membrane Bioreactor for Biological Nutrient Removal on Municipal Wastewater and Analyzing the Effect of Chemical Cleaning on Microbial Activity (도시 하수에서의 생물학적 고도처리를 위한 MBR공정 개발 및 화학세정에 의한 미생물 활성도 영향 분석)

  • Park, Jong-Bu;Park, Seung-Kook;Hur, Hyung-Woo;Kang, Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.120-124
    • /
    • 2009
  • This study was performed to investigate the application of submerged membrane bioreactor (MBR) system for biological nutrient removal of municipal wastewater. MBR bioreactor consists of four reactors such as anaerobic, stabilization, anoxic and submerged membrane aerobic reactors with two internal recycles. The hydraulic retention time (HRT), sludge retention time (SRT) and flux were 6.2 hr, 34.1 days and $19.6L/m^2/hr$ (LMH), respectively. As a result of operation, the removal efficiency of $COD_{Cr}$, SS, TN and TP were 94.3%, 99.9%, 69.4%, and 74.6%, respectively. There was no significant effect of microbial activity after the maintenance cleaning using 200 mg/L of NaOCl. Membrane filtration for the treatment of municipal wastewater was performed for longer than 9 months without chemical recovery cleaning.

A COMPARATIVE STUDY OF THE EFFECT K - FILE AND ULTRASONIC INSTRUMENT IN CLEANING AND SHAPING ROOT CANAL (K-File과 초음파기구의 근관확대 및 세척효과에 대한 비교연구)

  • Kim, Sang-Seop;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.2
    • /
    • pp.413-420
    • /
    • 1992
  • The purpose of this study was to compare the effectiveness of hand instrumentation with K - file and ultrasonic instrumentation and irrigation system in removing pulpal debris and canal wall planing. 20 mandibular molar teeth were instrumented to size 30 K - file and 20 teeth were instrumented with ultrasonic Suprasson. And Normal Saline and 2.5% NaOCl were used as irrigation solution. All specimens were viewed at the coronal, middle, and apical third of the root canals for the evaluation of the cleaning effect under the multiview microscope. The result were as follows : 1. All of the technique and irrigation solution was effecient in the debris removal and canal wall planing at the cervical and middle thirds of the root canal. 2. All of the techniques and irrigation solutions was less efficient in the debris removal and canal planing at the apical third of the root canal. 3. The debris removal and canal wall planing was depended more on the anatomical variations of the root canal than on the techniques and irrigation solutions.

  • PDF

Effects of canal enlargement and irrigation needle depth on the cleaning of the root canal system at 3 mm from the apex (근관확대 및 세척 주사바늘의 근관 내 위치가 치근단 3 mm 부위의 근관 세정에 미치는 영향)

  • Moon, Ho-Jin;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.1
    • /
    • pp.24-28
    • /
    • 2012
  • Objectives: The aim of this study was to test the hypothesis, that the effectiveness of irrigation in removing smear layer in the apical third of root canal system is dependent on the depth of placement of the irrigation needle into the root canal and the enlargement size of the canal. Materials and Methods: Eighty sound human lower incisors were divided into eight groups according to the enlargement size (#25, #30, #35 and #40) and the needle penetration depth (3 mm from working length, WL-3 mm and 9 mm from working length, WL-9 mm). Each canal was enlarged to working length with Profile.06 Rotary Ni-Ti files and irrigated with 5.25% NaOCl. Then, each canal received a final irrigation with 3 mL of 3% EDTA for 4 min, followed by 5 mL of 5.25% NaOCl at different level (WL-3 mm and WL-9 mm) from working length. Each specimen was prepared for the scanning electron microscope (SEM). Photographs of the 3mm area from the apical constriction of each canal with a magnification of ${\times}250$, ${\times}500$, ${\times}1,000$, ${\times}2,500$ were taken for the final evaluation. Results: Removal of smear layer in WL-3 mm group showed a significantly different effect when the canal was enlarged to larger than #30. There was a significant difference in removing apical smear layer between the needle penetration depth of WL-3 mm and WL-9 mm. Conclusions: Removal of smear layer from the apical portion of root canals was effectively accomplished with apical instrumentation to #35/40 06 taper file and 3 mm needle penetration from the working length.

Effect of irrigation protocols on smear layer removal, bond strength and nanoleakage of fiber posts using a self-adhesive resin cement

  • Rodrigo Stadler Alessi;Renata Terumi Jitumori ;Bruna Fortes Bittencourt;Giovana Mongruel Gomes ;Joao Carlos Gomes
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.3
    • /
    • pp.28.1-28.13
    • /
    • 2023
  • Objectives: This study aimed to investigate the effect of the application method of 2% chlorhexidine (CHX) and its influence on the adhesion of fiberglass posts cemented with a self-adhesive resin cement. Materials and Methods: Sixty human mandibular premolars were endodontically treated and divided into 5 groups (n = 12), according to the canal irrigant and its application method: 2 groups with conventional syringe irrigation (CSI)-2.5% sodium hypochlorite (NaOCl) (control) and 2% CHX- and 3 groups with 2% CHX irrigation/activation-by passive ultrasonic irrigation (PUI), Easy Clean file, and XP-Endo Finisher file. Two roots per group were evaluated for smear layer (SL) removal by scanning electron microscopy. For other roots, fiber posts were luted using a self-adhesive resin cement. The roots were sectioned into 6 slices for push-out bond strength (BS) (7/group) and nanoleakage (NL) (3/group). Data from SL removal were submitted to Kruskal-Wallis and Student-Newman-Keuls tests (α = 0.05). Data from BS and NL were evaluated by 2-way analysis of variance and Tukey's test (α = 0.05). Results: For SL removal and BS, the CHX irrigation/activation promoted better values than CSI with CHX (p < 0.05), but it was not significantly different from CSI with NaOCl (p > 0.05). For NL, the lowest values were obtained by the chlorhexidine irrigation/activation groups (p < 0.05). Conclusions: Active 2% CHX irrigation can be used to improve the post space cleaning and adhesion before fiber post cementation with self-adhesive resin cements.

Development of Steam Cleaning Technique to Improve Removal Efficiency of Membrane Fouling Matter in Water Treatment Process Using Ceramic Membrane (정수처리용 세라믹 분리막의 막오염 물질의 제거 효율 향상을 위한 스팀세정 기법 개발)

  • Kang, Joon-Seok;Park, Seo Gyeong;Lee, Jeong Eun;Kang, So Yeon;Lee, Jeong Jun;Quyen, Vo Thi Kim;Kim, Han-Seung
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.99-107
    • /
    • 2018
  • This research has developed a high temperature steam cleaning technology using a ceramic membrane with durability against temperature and pressure conditions. In steam cleaning, steam of $120^{\circ}C$ is injected into the ceramic membrane to induce pyrolysis by the endothermic reaction to remove fouling from the membrane. The water quality of raw water was adjusted to turbidity 10, 25 NTU and DOC 2.5 mg/L, and the membrane was uniformly fouled by constant pressure operation at 100, 200, and 300 kPa. Physical backwashing was performed with water and air at a pressure of 500 kPa and steam at $120^{\circ}C$ was injected for 0 to 5 minutes. As the turbidity concentration and the operating pressure increased, the flux decreased by 0.7 to 14.4%. It is confirmed that 10.7 to 53.8% recovery is possible than physical cleaning at the injection of steam for 3 minutes, so it is considered that the steam cleaning of the ceramic membrane is effective. Compared with CEB after NaOCl (300 mg/L) filtration at 25 NTU and 300 kPa of turbidity, the steam cleaning result for 3 minutes was similar to 46.7% of CEB for 3 hours. It has been confirmed that steam cleaning is suitable for a ceramic membrane having excellent heat resistance against high temperature. It was considered to have better cleaning efficiency as compared with general physical backwashing.

Optimum Operating Condition for Micro-Filtration Process as a Seawater Desalination Pretreatment (해수담수화 전처리로서 가압식 MF 공정의 최적 운전조건 도출)

  • Kim, Youngmin;Jang, Jung-Woo;Kim, Jin-Ho;Choi, June-Seok;Lee, Sangho;Kim, Sukwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.624-629
    • /
    • 2013
  • The relation between performance maintenance conditions and those cost efficiency was studied to choose an optimum operating condition in the seawater desalination pretreatment system. A hollow fiber microfiltration module, which was developed with domestic technology, was tested with the various operating conditions such as chemically enhanced backwash cycles and design dosages of a cleaning chemical. Transmembrane pressure was measured to investigate membrane fouling status and cleaning degree. In addition, economic analysis was performed to compare water production costs by the operation condition. As a result, The operation mode III, chemically enhanced backwash at once a day with 100 mg/L of sodium hypochlorite (NaOCl) was selected. The concurrent evaluation between membrane filtration performance and its economic analysis will be suitable to choose an efficient optimum condition.

A Study on the Effect of Non-Clean Water Treatment Chemicals for R-134a Turbo-Chiller Condensers (R-134a 터보냉동기 응축기의 무세정 수처리 약품 효과 연구)

  • JUNG, DA-WOON;KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.437-445
    • /
    • 2022
  • This paper presents an experimental study on the main management factors of the condenser contamination such as fouling and corrosion for the R-134a turbo-chiller to save energy, reduce corrosion rates, and reduce maintenance costs through the application of condenser non-cleaning water treatment chemical. The series of experiment is conducted using combining oxidative microbial sterilizers, non-oxidizing microbial sterilizers, and anti-corrosion agents. The leaving temperature difference and corrosion rates for three different combination of chemicals are collected and analyzed. The experimental results show that the cost reduction (4,066,000 Won/year) of the disinfectant (FT-830) can be achieved by adding the oxidative disinfectant (NaOCl) and the non-oxidizing disinfectant (NX-1116). The LTD value is maintained at 1.9℃, and the corrosion rates of copper and carbon steel specimens are 0.07 mpy and 1.61 mpy, respectively.