• Title/Summary/Keyword: NaI

Search Result 2,862, Processing Time 0.034 seconds

Design of Wide-Range radiation measurement system using GM Tube and NaI(TI) Detector (GM Tube 및 NaI(TI) 검출기를 사용한 Wide-Range 방사선 측정 시스템의 설계)

  • Ra, Seung-Tak;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.146-149
    • /
    • 2017
  • In this paper, we propose a wide-range radiation measurement system using GM Tube and NaI(TI) detector. The proposed system is designed as a small module optimized to control and count the detector signal of NaI(Tl) Detector and GM Tube. The radiation dose is measured in a wide-range 0.1uSv/h to 10mSv/h in conjunction with two detectors, and two detectors operate simultaneously at 10uSv/h to 100uSv/h, where the measurement interval overlaps. The radiation dose was selected using a wide-range radiation measurement algorithm that controls the on/off function of the detector in the appropriate interval for the overlapped radiation measurable interval. In order to evaluate the performance of the proposed system, it has been confirmed that the measurement uncertainty of each section is measured as ${\pm}7.5%$ and it operates normally under ${\pm}15%$ of the international standard.

Crystal Structure of Dehydrated Partially Cobalt(II)-Exchanged Zeolite X, $Co_{41}Na_{10}-X$ (부분적으로 $Co^{2+}$ 이온으로 치환된 제올라이트 X, $Co_{41}Na_{10}-X$를 탈수한 결정구조)

  • Jang, Se-Bok;Jeong, Mi-Suk;Han, Young-Wook;Kim, Yang
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.125-133
    • /
    • 1995
  • The crystal structure of dehydrated, partially Co(II)-exchanged zeolite X, stoichiometry Co2+Na+-X (Co41+Na10Si100Al92O384) per unit cell, has been determined from three-dimensional X-ray diffraction data gathered by counter methods. The structure was solved and refined in the cubic space group Fd3:α=24.544(1)Å at 21(1)℃. The crystal was prepared by ion exchange in a flowing stream using a solution 0.025 M each in Co(NO3)2 and Co(O2CCH3)2. The crystal was then dehydrated at 380℃ and 2×10-6 Torr for two days. The structure was refined to the final error indices, R1=0.059 and R2=0.046 with 211 reflections for which I > 3σ(I). Co2+ ions and Na+ ions are located at the four different crystallographic sites. Co2+ ions are located at two different sites of high occupancies. Sixteen Co2+ ions are located at the center of the double six-ring (site I; Co-O = 2.21(1)Å, O-Co-O = 90.0(4)°) and twenty-five Co2+ ions are located at site II in the supercage. Twenty-five Co2+ ions are recessed 0.09Å into the supercage from its three oxygen plane (Co-O = 2.05(1)Å, O-Co-O = 119.8(7)°). Na+ ions are located at two different sites of occupandies. Seven Na+ ions are located at site II in the supercage (Na-O = 2.29(1)Å, O-Na-O = 102(1)°). Three Na+ ions are statistically distribyted over site III, a 48-fold equipoint in the supercages on twofold axes (Na-O = 2.59(10)Å, O-Na-O = 69.0(3)°). Seven Na+ ions are recessed 1.02Å into the supercage from the three oxygen plane. It appears that Co2+ ions prefer sites I and II in order, and that Na+ ions occupy the remaining sites, II and III.

  • PDF

Phase Equilibria and Formation Behaviors of Methane Hydrate with Ethylene Glycol and Salts (에틸렌글리콜과 염이 포함된 메탄 하이드레이트의 상평형과 형성 거동)

  • Kim, Dong Hyun;Park, Ki Hun;Cha, Minjun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.635-641
    • /
    • 2020
  • In this study, phase equilibria and formation behaviors of methane hydrate containing mono-ethylene glycol (MEG) and salts (sodium chloride, NaCl; sodium bromide, NaBr; sodium iodide, NaI) are investigated. Equilibrium conditions of methane hydrate containing MEG and salts are measured in a temperature range 272~283 K and a pressure range 3.5~11 MPa. Hydrate inhibition performance in the presence of additives can be summarized as follows: methane hydrate containing (5 wt% NaCl + 10 wt% MEG) > (5 wt% NaBr + 10 wt% MEG) > (5 wt% NaI + 10 wt% MEG). Formation behaviors of methane hydrate with MEG and salts are investigated for analyzing the induction time, gas consumption amount and growth rate of methane hydrates. There are no significant changes in the induction time during methane hydrate formation, but the addition of MEG and salts solution during hydrate formation can affect the gas consumption amount and growth rate.

A Study for Analysis of Image Quality Based on the CZT and NaI Detector according to Physical Change in Monte Carlo Simulation (CZT와 NaI 검출기 물질 기반 물리적 변화에 따른 영상의 질 분석에 관한 연구: 몬테카를로 시뮬레이션)

  • Ko, Hye-Rim;Yoo, Yu-Ri;Park, Chan-Rok
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.741-748
    • /
    • 2021
  • In this study, we evaluated image quality by changing collimator length and detector thickness using the Geant4 Application for Tomographic Emission (GATE) simulation tool. The gamma camera based on the Cadimium Zinc Telluride (CZT) and NaI detectors is modeled. In addition the images were acquired by setting 1, 2, 3, 4, 5, and 6 cm collimator length and 1, 3, 5, and 7 mm detector thickness using point source and phantom, which is designed by each diameter (4.45, 3.80, 3.15, 2.55 mm) with 447, 382, 317, and 256 Bq. The sensitivity (cps/MBq) for point source, and signal to noise ratio (SNR) and profile for phantom at the 4.45 mm by drwan the region of interests were used for quantitative analysis. Based on the results, the sensitivity according to collimator length is 2.3 ~ 48.6 cps/MBq for CZT detector, and 1.8 ~ 43.9 cps/MBq for NaI detector. The SNR using phantom is 3.6~9.8 for CZT detector, and 2.9~9.5 for NaI detector. As the collimator length is increased, the image resolution is also improved according to profile results based on the CZT and NaI detector. In addition, the senistivity for detector thickness is 0.04 ~ 0.12 cps/MBq for CZT detector, and 0.03 ~ 0.11 cps/MBq. The SNR using phnatom is 7.3~9.8 count for CZT detector, and 5.9~9.5 for NaI detector. As the detector thickness is increased, the image resolution is decreased according to profile results based on the CZT and NaI detector due to scatter ray. In conclusion, we need to set the geometric material such as detector and collimator to acuquire suitable image quality in nuclear medicine.

Reuse of Sodium Sulfate Recovered from Farm Drainage Salt of San Joaquin Valley in California, U.S.A. as Dyeing Builder of Levelling Dyes (미국 캘리포니아 San Joaquin Valley 농업관개수에서 회수한 Sodium Sulfate의 균염성 염료 조제로의 재활용)

  • 정지윤
    • The Research Journal of the Costume Culture
    • /
    • v.11 no.3
    • /
    • pp.416-422
    • /
    • 2003
  • Agricultural drainage salt generated during irrigation of crops in San Joaquin Valley, California, exceeds 600,000 tons annually and cumulates in the field in a rapid rate. As a result, the waste is taking out more farmlands for salt storage and disposal, imposing serious concerns to environment and local agricultural industry. In searching for a potential solution to reduce or eliminate the waste, this research explored feasibility of producing a value-added product, sodium sulfate, from the waste and utilizing the product in textile dyeing. The results indicated that sodium sulfate could be produced from the salt and could be purified by a recrystalization method in a temperature range within the highest and lowest daily temperatures in summer in the valley. The recovered sodium sulfate samples, with purities ranging from 67% to 99.91, were compared with commercially available sodium sulfate in the dyeing of levelling dyes with nylon/wool fabrics. In nylon/wool fabrics, C.I. Acid Yellow 23 had similar exhaustions among Na₂SO₄ I, Na₂SO₄ II, Na₂SO₄ III and Na₂SO₄ Ⅴ which had similar ratios of sodium sulfate and sodium chloride in recovered salts. Na₂SO₄ Ⅳ had low exhaustion which had low ratios of sodium sulfate and sodium chloride. In nylon/wool fabrics, C.I. Acid Blue 158 had similar exhaustions among Na₂SO₄ I, Na₂SO₄ II, Na2₂SO₄ III, Na₂SO₄ IV and Na₂SO₄ Ⅴ despite of Na₂SO₄ Ⅳ had low ratios of sodium sulfate and sodium chloride Generally, the dyeing of levelling dyes using recovered salts from farm drainage has similar or low exhaustion than the dyeing of levelling dyes using commercial sodium sulfate.

  • PDF

A Study of Recycle of Waste Wood After Cultivating Oak Mushroom (II) - On the Structure of Cellulose Crystal Transformation of the Waste Wood - (표고버섯골목의 재활용에 관한 연구 (II) - 폐골목 세포벽 중의 셀룰로오스 결정의 변태구조 -)

  • Kim, Nam-Hun;Lee, Won-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.1-7
    • /
    • 1995
  • The crystal transformation from cellulose I to cellulose II during alkaline swelling of waste wood, which has been used for cultivating oak mushroom(Cortinellus edodes (Berk.) Ito et Imai), was investigated and compared to that of normal wood by a series of X-ray diffraction analysis. When the sapwood of cultivated wood was treated with 20% NaOH solution for 2 hours, the cellulose I can be easily transformed into Na-cellulose I than normal wood or heartwood of cultivated wood. Certainly the formation of Na-cellulose in wood is proportional to alkali swelling duration, and the formation of cultivated sapwood was faster than that of the other woods. Cellulose I in the sapwood of cultivated wood was easily transformed into cellulose II during mercerization, but the sapwood of normal wood and the heartwood of cultivated wood hardly converted to cellulose II. Namely, most of Na-cellulose I in normal wood can be reconverted to cellulose I in the process of washing and drying. Therefore, it can be concluded from this study that in cell wall lignin and hemicellulose can prevent the alkaline swelling of cellulose in wood and the transformation from cellulose I to cellulose II as well.

  • PDF