• Title/Summary/Keyword: NaI(Tl) 섬광 검출기

Search Result 18, Processing Time 0.02 seconds

Development of Imaging Gamma Probe Using the Position Sensitive PMTube (위치 민감형 광전자증배관을 이용한 영상용 감마프로브의 개발)

  • Bong, Jeong-Gyun;Kim, Hui-Jung;So, Su-Gil;Kim, Han-Myeong;Lee, Jong-Du;Gwon, Su-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.107-113
    • /
    • 1999
  • The purpose of this study was to develop a miniature imaging gamma probe with high performance that can detect small or residual tumors after surgery. Gamma probe detector system consists of NaI(Tl) scintillator, position sensitive photomultiplier tube (PSPMT), and collimator. PSPMT was optically coupled with 6.5 mm thick, 7.62 cm diameter of NaI(Tl) crystal and supplied with -1000V for high voltage. Parallel hexagonal hole collimator was manufactured for characteristics of 40-mm hole length, 1.3-mm hole diameter, and 0.22 mm septal thickness. Electronics consist of position and trigger signal readout systems. Position signals were obtained with summing, subtracting, and dividing circuit using preamplifer and amplifier. Trigger signals were obtained using summing amplifier, constant fraction discriminator, and gate and delay generator module with preamplifer. Data acquisition and processing were performed by Gamma-PF interface board inserted into pentium PC and PIP software. For imaging studies, flood and slit mask images were acquired using a point source. Two hole phantom images were also acquired with collimator. Intrinsic and system spatial resolutions were measured as 3.97 mm and 5.97 mm, respectively. In conclusion, Miniature gamma probe images based on the PSPMT showed good image quality, we conclude that the miniature imaging gamma probe was successfully developed and good image data were obtained. However, further studies will be required to optimize imaging characteristics.

  • PDF

International Comparison of Absolute Activity Measurement of $^{133}Ba$ Solution ($^{133}Ba$ 용액의 방사능 절대측정의 국제비교)

  • Park, Tae-Soon;Oh, Pil-Jae;Hwang, Sun-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.2
    • /
    • pp.130-136
    • /
    • 1985
  • The activity measurement of a solution of $^{133}Ba$ which is an electron capture nuclide was carried out by the ${\beta}-{\gamma}$ coincidence method. The counting rates at the ${\beta}-,\;{\gamma}-$, and coincidence-channels were measured using a $4{\pi}$ proportional counter and two NaI(Tl) scintillation detectors. The specific activity of the solution calculated by the efficiency extrapolation was $(1151.01{\pm}2.99)kBqg^{-1}$ at the reference time(00h UT, 03-15-84). According to an international comparison of activity measurements organized by the Bureau International des Poids et Mesures, this result showed the difference of 0.94% to the mean value derived from the comparison.

  • PDF

Development of a Spectrum Analysis Software for Multipurpose Gamma-ray Detectors (감마선 검출기를 위한 스펙트럼 분석 소프트웨어 개발)

  • Lee, Jong-Myung;Kim, Young-Kwon;Park, Kil-Soon;Kim, Jung-Min;Lee, Ki-Sung;Joung, Jin-Hun
    • Journal of radiological science and technology
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • We developed an analysis software that automatically detects incoming isotopes for multi-purpose gamma-ray detectors. The software is divided into three major parts; Network Interface Module (NIM), Spectrum Analysis Module (SAM), and Graphic User Interface Module (GUIM). The main part is SAM that extracts peak information of energy spectrum from the collected data through network and identifies the isotopes by comparing the peaks with pre-calibrated libraries. The proposed peak detection algorithm was utilized to construct libraries of standard isotopes with two peaks and to identify the unknown isotope with the constructed libraries. We tested the software by using GammaPro1410 detector developed by NuCare Medical Systems. The results showed that NIM performed 200K counts per seconds and the most isotopes tested were correctly recognized within 1% error range when only a single unknown isotope was used for detection test. The software is expected to be used for radiation monitoring in various applications such as hospitals, power plants, and research facilities etc.

The Flow-rate Measurements in a Multi-phase Flow Pipeline by Using a Clamp-on Sealed Radioisotope Cross Correlation Flowmeter (투과 감마선 계측신호의 Cross correlation 기법 적용에 의한 다중상 유체의 유량측정)

  • Kim, Jin-Seop;Kim, Jong-Bum;Kim, Jae-Ho;Lee, Na-Young;Jung, Sung-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • The flow rate measurements in a multi-phase flow pipeline were evaluated quantitatively by means of a clamp-on sealed radioisotope based on a cross correlation signal processing technique. The flow rates were calculated by a determination of the transit time between two sealed gamma sources by using a cross correlation function following FFT filtering, then corrected with vapor fraction in the pipeline which was measured by the ${\gamma}$-ray attenuation method. The pipeline model was manufactured by acrylic resin(ID. 8 cm, L=3.5 m, t=10 mm), and the multi-phase flow patterns were realized by an injection of compressed $N_2$ gas. Two sealed gamma sources of $^{137}Cs$ (E=0.662 MeV, ${\Gamma}$ $factor=0.326\;R{\cdot}h^{-1}{\cdot}m^2{\cdot}Ci^{-1}$) of 20 mCi and 17 mCi, and radiation detectors of $2"{\times}2"$ NaI(Tl) scintillation counter (Eberline, SP-3) were used for this study. Under the given conditions(the distance between two sources: 4D(D; inner diameter), N/S ratio: $0.12{\sim}0.15$, sampling time ${\Delta}t$: 4msec), the measured flow rates showed the maximum. relative error of 1.7 % when compared to the real ones through the vapor content corrections($6.1\;%{\sim}9.2\;%$). From a subsequent experiment, it was proven that the closer the distance between the two sealed sources is, the more precise the measured flow rates are. Provided additional studies related to the selection of radioisotopes their activity, and an optimization of the experimental geometry are carried out, it is anticipated that a radioisotope application for flow rate measurements can be used as an important tool for monitoring multi-phase facilities belonging to petrochemical and refinery industries and contributes economically in the light of maintenance and control of them.

Study on the Dosimetry and Assessment of Terrestrial Radiation Exposure (지각 방사선에 의한 피폭선량측정 및 해석)

  • Jun, Jae-Shik;Oh, Hi-Peel;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.87-100
    • /
    • 1990
  • For the quantitative evaluation and assessment of radiation exposure from terrestrial component of natural environmental radiation, successive thermoluminescence dosimetry and periodical in-situ gamma ray spectrometry were carried out for a period of 24 months. LiF PTFE dise TLDs and $3&{\phi}{\times}3'$cylindrical NaI(Tl)scintill ation detector in association of portable multichannel analyzer (4096 ch) were used in this study. The doses measured were evaluated and assessed in terms of effective dose equivalent. As a concomitant output, the dose equivalent due to ionizing component of cosmic ray was able to be evaluated. According to the results obtained in terms of variance weighted mean, the annual effective dose equivalents of terrestrial gamma ray and cosmic ray ionizing component in Taejeon area came out to be $564{\pm}4\;{\mu}Sv(64.8{\pm}0.5nSv{\cdot}h^{-1}$ and $300{\pm}2\;{\mu}Sv(34.3{\pm}0.2nSv{\cdot}h^{-1}$, respectively, which are reasonable comparably with that appeared in UNSCEAR Report[28]as per caput annual effective dose equivalent in 'areas of normal background radiation'.

  • PDF

Study on The Quantification of Cosmic-Ray Component Contributed to Natural Background Radiation Exposure (자연 방사선량 중 우주선 기여 성분 정량 연구)

  • Jun, Jae-Shik;Oh, Hi-Peel;Ha, Chung-Woo;Oh, Heon-Jin;Kang, In-Seon
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.2
    • /
    • pp.9-20
    • /
    • 1988
  • In order to quantify the contribution of cosmic-ray ionizing component to the dose given by natural background radiation, a series of measurement has been carried out using LiF TLDs for about one and a half years on quarterly basis. Three different types of LiF TLDs namely, chips and PTFE based disks of $^{7}LiF$, and the same disks of $^{6}LiF$ for identifying possible contribution of neutron component were used. Measurements were made by placing badge-incased TLDs in a lead castle of 10 to 15cm thick installed in a room on the third floor of a four-story building in CNU Daedeok campus for 5 cycles of 90 days. For comparison a series of spectrometric study was also performed for the energy region over 3MeV using a 3'${\phi}\;{\times}\;3$'NaI(Tl) scintillation detector in association with an MCA of 1024 channels, and it was found that the data obtained by the TLDs placed in the lead castle indicate 75% of the dose given by outdoor cosmic-ray component. The results obtained by the TLDs through correction for shielding loss show that the outdoor dose contribution of ionizing component of cosmic rays at this campus is $34.3{\pm}1.1nGy/h$ which satisfactorily agrees with that expected for our particular location of measurement.

  • PDF

Development of Two-dimensional Prompt-gamma Measurement System for Verification of Proton Dose Distribution (이차원 양성자 선량 분포 확인을 위한 즉발감마선 이차원분포 측정 장치 개발)

  • Park, Jong Hoon;Lee, Han Rim;Kim, Chan Hyeong;Kim, Sung Hun;Kim, Seonghoon;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.42-51
    • /
    • 2015
  • In proton therapy, verification of proton dose distribution is important to treat cancer precisely and to enhance patients' safety. To verify proton dose distribution, in a previous study, our team incorporated a vertically-aligned one-dimensional array detection system. We measured 2D prompt-gamma distribution moving the developed detection system in the longitudinal direction and verified similarity between 2D prompt-gamma distribution and 2D proton dose distribution. In the present, we have developed two-dimension prompt-gamma measurement system consisted of a 2D parallel-hole collimator, 2D array-type NaI(Tl) scintillators, and multi-anode PMT (MA-PMT) to measure 2D prompt-gamma distribution in real time. The developed measurement system was tested with $^{22}Na$ (0.511 and 1.275 MeV) and $^{137}Cs$ (0.662 MeV) gamma sources, and the energy resolutions of 0.511, 0.662 and 1.275 MeV were $10.9%{\pm}0.23p%$, $9.8%{\pm}0.18p%$ and $6.4%{\pm}0.24p%$, respectively. Further, the energy resolution of the high gamma energy (3.416 MeV) of double escape peak from Am-Be source was $11.4%{\pm}3.6p%$. To estimate the performance of the developed measurement system, we measured 2D prompt-gamma distribution generated by PMMA phantom irradiated with 45 MeV proton beam of 0.5 nA. As a result of comparing a EBT film result, 2D prompt-gamma distribution measured for $9{\times}10^9$ protons is similar to 2D proton dose distribution. In addition, the 45 MeV estimated beam range by profile distribution of 2D prompt gamma distribution was $17.0{\pm}0.4mm$ and was intimately related with the proton beam range of 17.4 mm.

Assessment of Natural Radiation Exposure by Means of Gamma-Ray Spectrometry and Thermoluminescence Dosimetry (감마선분광분석(線分光分析) 및 열형광검출법(熱螢光檢出法)에 의한 자연방사선(自然放射線)의 선량측정연구(線量測定硏究))

  • Jun, Jae-Shik;Oh, Hi-Peel;Choi, Chul-Kyu;Oh, Heon-Jin;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.2
    • /
    • pp.96-108
    • /
    • 1985
  • A study for the assessment of natural environmental radiation exposure at a flat and open field of about $10,000m^2$ in area in CNU Daeduk campus has been carried out by means of gamma-ray scintillation spectrometry and thermoluminescence dosimetry for one year period of time from October 1984. The detectors used were 3'${\phi}{\times}$3' NaI(T1) and two different types of LiF TLD, namely, chip sealed in plastic sheet which tightly pressed on two open holes of a metal plate and Teflon disk. Three 24-hour cycles of in-situ spectrometry, and two 3-month and one 1-month cycles of field TL dosimetry were performed. All the spectra measured were converted into exposure rate by means of G(E) opertaion, and therefrom exposure rate due to terrestrial component of environmental radiation was figured out. Exposure rate determined by the spectrometry was, on average, $(10.54{\pm}2.96){\mu}R/hr$, and the rates of $(12.0{\pm}3.4){\mu}R/hr$ and $(11.0{\pm}3.6){\mu}R/hr$ were obtained from chip and disk TLD, respectively. Fluctuations in diurnal variation of the exposure rate measured by the spectrometry were noticeable sometime even in a single cycle of 24 hours. It is concluded that appropriately combined use of TLD with iu-sitn gamma-ray spectrometry system can give more accurate and precise measure of environmental radiation exposure, and further study for more adequate and sensitive TLD for environmental dosimetry, including improvement and elevation of accuracy in data assessment through inter-laboratory or international intercomparison is necessary.

  • PDF