• Title/Summary/Keyword: NaCl-dependent amylase

Search Result 3, Processing Time 0.019 seconds

NaCl-dependent Amylase Gene From Badillus circulans F-2 Its Nucleotide Sequence (Bacillus circulans F-2의 NaCl 의존성 amylase 유전자의 DNA 염기배열 결정)

  • 김철호;권석태;타니구치하지메;마루야마요시하루
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.309-316
    • /
    • 1990
  • The sequence of a 1795 bp restriction fragment containing the B. circulans F-2 gene for NaC1- dependent $\alpha$-amylase (CI-amylase) is reported. The probable coding region of the gene is 1005 base pairs (335 amino acida) long. The NaC1-dependent $\alpha$-amylase (el-amy) sequence shows an open reading frame (ORF) with the translated molecular weight of about 38, 006, which correspond to a molecular weight of about 35, 000 (Mi). The gene is preceded by the sequence resembling promoter for the vegetative B, subtitis RNA polymerases. These are followed by the sequences resembling a B. subtilis ribosome binding site 5 nucleotides before the first codon of the gene. Homologous regions with other amylases were found. The N-terminal sequences of the mature proteins expressed in E. eoli were identical to the N-terminal sequences which are anaIysed.

  • PDF

Effect of chloride ions on the catalytic properties of human pancreatic α-amylase isozyme produced in Pichia pastoris (Pichia pastoris에서 생산된 인체 췌장 α-아밀레이스 동질효소의 촉매활성에 대한 염소이온의 영향)

  • Kim, Min-Gyu;Kim, Young-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.341-346
    • /
    • 2016
  • The AMY2B gene, encoding human pancreatic ${\alpha}$-amylase isozyme (HPA II), was expressed in Pichia pastoris, and the effects of chloride ions on HPA II activity toward starch substrates were investigated. As seen with chloride ion-dependent ${\alpha}$-amylases-including HPA I, the isozyme of HPA II-chloride ions increased enzyme activity and shifted the optimal pH to an alkaline pH. The activity enhancement by chloride was more significant at pH 8 than that at pH 6, suggesting that the protonation state of the general acid/base catalyst of HPA II was important for the hydrolysis of starches at an alkaline pH because of the increase in its $pK_a$ by chloride ions. The turnover values for cereal starches as the substrates markedly increased in the presence of chloride by up to 7.2-fold, whereas that for soluble starch increased by only 1.7-fold. Chloride inhibited substrate hydrolysis at high substrate concentrations, with $K_i$ values ranging from 6 to 15 mg/mL.

Analysis of the Age-Dependent Change in the Blood Chemical Values from Hyline Brown Layer Chickens under Field Condition (하이라인 갈색 산란계의 일령별 혈액 화학치 변화 분석)

  • Son, Y.H.;Cha, S.Y.;Park, J.B.;Park, Y.M.;Ryu, K.S.;Jang, H.K.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.2
    • /
    • pp.91-97
    • /
    • 2007
  • To evaluate the physiological status of laying flocks, the blood chemistry values were measured and analyzed in various ages under different feeding conditions. Total 671 birds from 48 Hyline brown hens flocks from 13 different poultry farms were bled at the ages of day(s) 1, 11, 21, 50, 80, 120, 180, 240, 300, 400, and 500. The 17 blood chemistries including glucose, lipids, proteins, enzymes, electrolytes and metabolic by-products were measured with an autoanalyzer. Blood glucose showed the highest at the hatching day not relate with the dietary carbohydrates and energy, but tended to decrease during the rest of growth stage in hens. Total blood protein, albumin and globulin increased depending on the ages even though dietary protein was decreased. Blood lipid was greatly changed at different growth stages. Cholesterol was the highest at hatching period and maintained consistently until the 120 days of age. It was increased in birds after 180 days of age. HDL was also highest in hatchery, but decreased greatly after 180 days of age. However, TG was the lowest at one day old, but was increased up to 10 times after 180 days of age compared to that of one day old. The enzyme activities were different. AST, ALT, and GGT showed comparatively contained consistently, whereas amylase was slowly decreased. Blood P, Na, K and Cl showed consistency, but Ca content was increased upto two times of the one day of age. The results from this study showed that the blood chemistry values were affected by the general metabolic status of the host with ages not by feeding conditions. Further, the standard data of age-dependent blood chemistry values in the laying flocks were obtained, which can be utilized for early detection of the changes in the physiological status occurred by the infectious or metabolic diseases. The results of these analyses seemed to be useful to increase the productivity of laying flocks through rapid and proper veterinary medical treatments.