• Title/Summary/Keyword: Na-P zeolite

Search Result 102, Processing Time 0.026 seconds

Utilization of Natural Zeolite for $NH_4^\;^+-N$ Adsorbent (($NH_4^\;^+-N$ 흡착제(吸着劑)로서의 천연(天然) Zeolite의 이용(利用))

  • Kim, Sang-Su;Hur, Nam-Ho;Choi, Jyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.1
    • /
    • pp.27-31
    • /
    • 1991
  • This study was conducted to examine the adsorption capacity of $NH_4\;^+-N$ by natural zeolite for the purpose of investigating the possibility for $NH_4\;^+-N$ eliminator of Korean natural zeolite. The dominant clay minerals of zeolite were clinoptilolite and mordenite. The reaction of $NH_4\;^+-N$ adsorption by zeolite reached equilibrium after 4hrs. The amount of $NH_4\;^+-N$ adsoption by zeolite was not significantly affected by the particle size of zeolite. The order of $NH_4\;^+-N$ adsorption by zeolite according to exchangeable cations was Na-> Ca> K-saturated zeolite. The amount of $NH_4\;^+-N$ adsorption by zeolite was increased with increasing pH of solution and the ratio of zeolite to the volume of solution. The isothermal curvel of $NH_4\;^+-N$ adsorption by zeolite was conformed to Langmuir equation.

  • PDF

Acid Treatment of Melting Slag and Its Hydrothermal Reaction (산처리한 생활폐기물 용융슬래그의 수열반응 특성)

  • Lee, Sung-Ki;Jang, Young-Nam;Chae, Soo-Chun;Ryu, Kyoung-Won;Bae, In-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.267-275
    • /
    • 2007
  • Melting slag generated from municipal-incinerator ash contains lots of impurities which have adverse effects on zeolite synthesis. These impurities are detrimental to zeolite synthesis, and the yield and purity of zeolite was decreased. And thus its performance is lowered. In melting slag, there are lots of components such as $Fe_2O_3$, FeO and CaO. To remove these impurities, we treated the melting slag with hydrochloric acid at initial pH 1, 3, 5, and 7. After the treatment, the $SiO_2,\;Fe_2O_3,\;and\;TiO_2$ ratios increased, but the $Al_2O_3,\;FeO,\;CaO,\;Na_2O$ and MgO ratios decreased. We reacted these treated slag in a NaOH solution under hydrothermal conditions at $80^{\circ}C$. The hydrothermal products from the slag and the slag treated at pH 7 and pH 5 were determined to be tobermorite, whereas those at pH 3 and pH 1, Na-P1 and Na-X zoelite respectively. CaO was found to inhibit the synthesis of zeolite.

Hydrothermal Synthesis of Smectite from Zeolite (제올라이트로부터 스멕타이트 수열 합성에 대한 연구)

  • Chae, Soo-Chun;Kim, You-Dong;Jang, Young-Nam;Bae, In-Kook;Ryu, Kyung-Won;Lee, Sung-Ki
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.301-310
    • /
    • 2006
  • Smectites were synthesized from Na-P type and Na-A type zeolites by the hydrothermal synthetic method, and their physicochemical properties were studied. The optimal synthetic conditions for producing smectite were $290^{\circ}C$, 72 hr and $75{\sim}100kgf/cm^2$ in autogenous pressure. pHs of initial reaction solutions for the synthesis of smectites from Na-P type and Na-A type zeolite s were pH 6 and pH 10, respectively. The synthetic smectite was confirmed as $12{\AA}$-beidellite by a series of analysis such as X-ray diffraction analysis with random and oriented mounts, ethylene glycol treatment, and Greene-Kelly test, and their several physicochemical properties were studied.

Synthesis of Zeolite P1 and Analcime from Sewage Sludge Incinerator Fly Ash (하수슬러지 소각 비산재를 이용한 제올라이트 P1 및 Analcime의 합성)

  • Lee, Je-Seung;Chung, Sook-Nye;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.659-665
    • /
    • 2008
  • This study is about zeolite synthesis from the sewage sludge incinerator fly ash of "S" sewage treatment center located in Seoul. For this purpose, the properties of raw fly ash as starting material, the hydrothermal conditions for zeolite synthesis and the environmental applicabilities of synthesized zeolites were examined. Fly ash from sewage sludge incinerator has large quantities of SiO$_2$ and Al$_2$O$_3$ and their contents are 42.8 wt.% and 21.2 wt.% respectively. So fly ash is considered to be possible starting material for zeolite synthesis. The results from leaching test of fly ash showed that the concentration of hazardous metals were very low as compared with the Korea leaching standard of the Waste Management Law. But the concentration from total recoverable test of fly ash were higher than the fertilizer standard of Fertilizer Management Law. Major zeolite products synthesized by hydrothermal reaction are analcime in teflon vessel and zeolite P1 in borosilicate flask. Optimum conditions for the synthesis of analcime were 1 N of NaOH concentration, 16 hour of reaction time and 135$^{\circ}C$ of reaction temperature. For the zeolite P1 formation, the proper conditions were demonstrated to be 5 N of NaOH concentration, 16 hour reaction time and 130$^{\circ}C$ of reaction temperature in this study. Hazardous metal contents in the analcime product are similar with those in raw fly ash. In case of the zeolite P1, the contents are reduced to nearly a half. Raw fly ash and the analcime product showed NH$_4{^+}$ ion exchange capacity of 0$\sim$1.0 mg of NH$_4{^+}$g$^{-1}$ and 3.0$\sim$7.4 mg of NH$_4{^+}$g$^{-1}$, respectively. However, the zeolite P1 product reached exchange capacity to 14.6$\sim$17.8 mg of NH$_4{^+}$g$^{-1}$. This values are in the range of those of natural clinoptilolite and phillipsite. From this point of view, zeolite synthesis from sewage treatment sludge incinerator fly ash is a good alternative for solid waste recycling.

Removal of Ammonia from Aqueous Solutions with Zeolite and Bentonite (제오라이트 및 벤토나이트에 의한 수용액중 암모니아의 제거)

  • 이화영;오종기;김성규;고현백
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.3-9
    • /
    • 2002
  • Relnoval of ammonia from aqueous solutions has been studied with zeolite and bentonite minerals. Zeolite and bentonite powder were supplied by a domestic company and used as delivered without further purification. The aqueous pH was found to increase by addition of zeolite or bentonite up to pH 8.5 from initial pH of 5.5∼5.7. From the C.E.C. measurement by ammonium acetate leaching method, the values of C.E.C. of zeolite and bentonite sample were observed to be 129.7 meq/100 gr and 65.1 meq/100 gr, respectively and Na+ ion accounted for the major part of total C.E.C. in both cases. In the removal of ammonia with zeolite and bentonite, physical adsorption of ammonium ion onto minerals was believed to contribute to the removal of it as well as the intrinsic cation exchange reaction. Finally, zeolite was found to be superior to bentonite in the removal of ammonia from aqueous solutions.

Hydrothermal Mechanism of Na-A Type Zeolite from Natural Siliceous Mudstone (규질 이암으로부터 Na-A형 제올라이트 수열합성 반응기구에 대한 연구)

  • Bae, In-Kook;Jang, Young-Nam;Chae, Soo-Chun;Kim, Byoung-Gon;Ryu, Kyoung-Won;Lee, Sung-Ki
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.223-229
    • /
    • 2007
  • The mechanism of hydrothermally synthesizing Na-A zeolite from siliceous mudstone at a $Na_2O/SiO_2$ ratio of 0.6, a $SiO_2/Al_2O_3$ 2.0 and a $H_2O/Na_2O$ 119 has been observed by IR, DTA, XRD and SEM. This mudstone is a tertiary periodic sedimentary rock and widely spreads around the Pohang area. In the early hydrothermal synthesis at $80^{\circ}C$ in an autoclave, sodium silicate and sodium aluminate were found to be preferentially reacted to generate Na-A type zeolite. Gibbsite and bayerite were also formed due to the presence of extra aluminum oxide in the feedstock. As reaction time in-creased up to 50 h, residual sodium aluminatewas reacted with siliceous mudstone, causing the Na-A zeolite crystal to grow and the hydroxylsodalite to generate. Therefore, in the $14{\sim}50\;h$ synthetic time, Na-A zeolite and hydroxylsodalite were formed. Also, if reaction time passed over 50 h, a part of the Na-A zeolite was finally redissolved and reacted with hydroxylsodalite to synthesize Na-P zeolite, generating porous surface of Na-A zeolite and disappearing hydroxylsodalite.

Preparation of Novel PS-zeolite Beads Immobilized Zeolite with Polysulfone for Radioactive Materials (Polysulfone으로 제올라이트 A를 고정화한 방사성 물질제거용 PS-zeolite 비드 제조)

  • Lee, Chang-Han;Park, Jeong-Min;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.3
    • /
    • pp.145-151
    • /
    • 2015
  • In order to remove Sr ions and Cs ions from aqueous solution, PS-zeolite beads were prepared by immobilizing zeolite with polysulfone (PS). The prepared PS-zeolite beads were characterized by SEM, XRD, FT-IR, and TGA. The optimum condition to prepare PS-zeolite beads was 1.25 g of PS content and 2 g of zeolite A. The removal efficiencies of Sr and Cs ions by the PS-zeolite beads increased as the solution pH increases and nearly reached a plateau at pH 4. The PS-zeolite beads prepared in this study showed a remarkably high selectivity for Sr ion and Cs ion under the coexistence of ions such as $Na^+$, $K^+$, $Mg^{2+}$, and $Ca^{2+}$. Zeolite particles detached from the PS-zeolite beads were not observed on this experiments, and also the PS-zeolite beads maintained the morphological structure on a SEM image. The removal efficiencies of Sr ions and Cs ions by PS-zeolite beads were maintained over 90% even after five adsorption-desorption cycles. These results implied that the prepared PS-zeolite beads could be an available adsorbent for the adsorption of Sr and Cs ions. These results suggest that the PS-zeolite can potentially be used as an adsorbent in radioactive ions removal for the treatment of industrial wastewater.

Developement of Heavy Metal Adsorbent Utilising Natural Zeolite (천연(天然) Zeolite를 이용(利用)한 중금속(重金屬) 흡착제(吸着劑)의 개발(開發))

  • Kim, S.S.;Park, M.;Hur, N.H.;Choi, J.
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.1
    • /
    • pp.11-19
    • /
    • 1991
  • This study was carried out to develop the low-priced adsorbent by synthesizing the zeolite of high CEC with the natural zeolite and examining the ability of this zeolite to adsorb heavy metals. The dominant clay minerals were clinoptilolite and mordenite in natural zeolite, while phillipsite in the synthesized zeolite. Adsorption reaction of Cu and Zn on clays were reached to equilibrium after 1 hr. The amount of adsorption was increased as the concentrations of heavy metals or the initial pH of suspension was increased. The synthesized zeolite adsorbed heavy metals about twice as much as the natural zeolite. The adsorption of heavy metals on the synthesized zeolite was less affected by the initial pH of suspension than that on natural zeolite. At cumulative adsorption, the synthesized zeolite adsorbed much more heavy metals at early three treatments than the natural zeolite did. The amount of desorption by chloride salts was increased as the concentration of chloride salts was increased. The ability of salt to desorb was in the order of NaCl>$CaC1_2$>$AlC1_3$. It is estimated that the ability of the synthesized zeolite to remove heavy metals was better than that of the natural zeolite.

  • PDF

Zeolite Filtration for Ammonium Nitrogen Removal in Drinking Water Treatment (정수처리에서 암모니아성질소 제거를 위한 제올라이트 여과)

  • 김우항;김충환
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.281-286
    • /
    • 2003
  • This study was conducted to evaluate the feasibility of ammonia removal by zeolite adsorption in drinking water treatment. In generally, drinking water treatment process is conducted coagulation/flocculation, sedimentation, sand filtration and disinfection. We tested feasibility with two method, one is powdered zeolite dosing to coagulation tank and the other is to substitute granular zeolite for sand of sand filter. In powdered zeolite test, raw water is used tap water with putting of 2 mg/l of NH$_4$$\^$+/-N. Filtration of granular zeolite was conducted with 80 cm of effective column high and 120 m/d of flow rate. At above 100 mg/1 of zeolite dosage, ammonia concentration was decreased below 0.5 mg/l of NH$_4$$\^$+/-N in powdered zeolite test. But, turbidity was increased to 30 NTU by powdered zeolite dosage. That turbidity was scarcely decreased in generally coagulant using condition in drinking water treatment. In granular zeolite test, ammonia was not detected in treated water until 8 days. This result suggest that using of granular zeolite in sand filter could be removal ammonia in winter. But we need regeneration at zeolite filtration for ammonia removal. So, it is to make clear that zeolite regeneration ability was compared KCl with NaCl. The result reveal that KCl was more excellent than NaCl. Optimum regeneration concentration of KCl was revealed 100 mM. Regeneration efficient was not increased at pH range 10∼12.5.

Removal Characteristics of Heavy Metal by Na-P1 Zeolite Synthesized from Coal Fly Ash

  • Mingyu Lee;Don
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.167-175
    • /
    • 1992
  • This study was conducted for an efficient utilization of waste fly ash obtained from the power plant. Fly ash was used for synthesizing zeolite. Na-Pl zeolite could be easily synthesized from waste fly ash and showed the potential to remove heavy metal ions. The synthetic zeolite showed good adsorption property for heavy metal much better than raw fly ash and natural zeolites. Na-Pl exhibited the high adsorption efficiency with a maximum value of 260 Pb mg/g and strong affinity for Pb2+ ion. The metal ion selectivity of Na-Pl was determined in a decreasing order : $Pb^{2+}$>$Cd^{2+}$>$Cu^{2+}$+>$Zn^{2+}$>$Fe^{3+}$

  • PDF