• Title/Summary/Keyword: NVH

Search Result 212, Processing Time 0.03 seconds

Design Tool Development of NVH of Vehicle Body (자동차 소음, 진동 저감을 위한 차체 설계 프로그램 개발)

  • 왕세명;이제원;기성현;문희곤;서진관
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.57-63
    • /
    • 1998
  • In this paper, a design tool using continuum design sensitivity analysis (DSA) method has been developed for noise, vibration, and harshness (NVH). Design sensitivity is formulated, implemented numerically, and named SENS1. SENS1 can compute the design sensitivity using model and response files of MSC/NASTRAN of vehicle. A of real vehicle model is considered to validate SENS1. Numerical study shows SENS1 is a useful tool to improve NVH performances of vehicle body.

  • PDF

Perspectives and Current Developments for NVH Data Acquisition and Analysis

  • Hobelsberger, Josef
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.439-440
    • /
    • 2012
  • New analysis methods complement classical approaches in the vehicle NVH development by reducing and accelerating iteration steps to obtain a target sound. Therefore, tools are required that allow an integrative approach of sound engineering and structural analysis and enable a precise simulation and modification based on measured data. The Response Modification Analysis (RMA) is such a hybrid solution, which provides indications of relevant transfer paths taking into account the sensitivity of response channels to modifications of reference channels.

  • PDF

A Study on Measurement and Improvement for Shock Absorber NVH (Shock Absorber NVH 계측 및 이음 개선 연구)

  • Min-Hyung Yu;Jonghyun Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1173-1174
    • /
    • 2023
  • Shock Absorber 는 Suspension 부품 중 하나로 감쇠력을 통해 스프링의 수축을 제어함으로써 차량의 승차감 및 안정성을 향상시키는 장치이다[1]. 그러나, 스프링의 상하운동을 억제하기 위해 Shock Absorber 가 압축·인장 됨으로써 소음이 발생하여 탑승객을 불편하게 한다. 본 논문에서는 이에 대한 계측을 통해 원인을 파악하고 NVH 를 개선하여 승차감 향상을 도모한다.

NVH case study (NVH 시험 사례)

  • Moon, Sang-Bae;Jeon, Jae-Hong;Lee, Yong-Seoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.350-351
    • /
    • 2010
  • PDF

Modeling and CAE Simulation of Chassis Driveline Test Bench for Vehicle NVH Improvement (차량 NVH개선 설계를 위한 샤시 구동계의 Driveline Test Bench 구성 및 CAE 해석)

  • Kim, Kee-Joo;Ju, Hyung-Jun;Lee, Yong-Heon;Bae, Dae-Sung;Sung, Chang-Won;Baik, Young-Nam;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.114-119
    • /
    • 2009
  • The authors have investigated the NVH problems of drive system in full vehicle test. However it is difficult to define the NVH problems of driveline system. Since it is hard to measure the rotating part and it is vague that only the drive system induces the NVH problem. Vibration in a driveline is presented in this paper. In the experiment, the rear sub-frame and propeller shafts and axle were composed and mounted with rubber each other. For applying the vibration input instead of the torsional vibration effect of an engine, the shaker was taken. In particular, torsional vibration due to fluctuating forced vibration excitation across the joint between driveline and rear sub-frame was carefully examined. Accordingly, the joint response was checked from experiments and the FE-simulation using FRF (frequency response function) analysis was performed. All test results were signal processed and validated against numerical simulations. In present study, the new test bench for measuring the vibration signal and simulating the vehicle chassis system was proposed. The modal value and the mode shape of components were analyzed using the CAE model to identify the important components affecting driveline noise and vibration. It could be reached that the simplified test bench could be well established and be used for design guide and development of the vehicle chassis components.