• Title/Summary/Keyword: NUTRIENT CONCENTRATION

Search Result 1,586, Processing Time 0.033 seconds

Development of a Supporting System for Nutrient Solution Management in Hydroponics - II. Estimation of Electrical Conductivity(EC) using Neural Networks (양액재배를 위한 배양액관리 지원시스템의 개발 - II. 신경회로망에 의한 전기전도도(EC)의 추정)

  • 손정익;김문기;남상운
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.162-168
    • /
    • 1992
  • As the automation of nutrient solution management proceeds in the field of hydroponics, effective supporting systems to manage the nutrient solution by computer become needed. This study was attempt to predict the EC of nutrient solution using the neural networks. The multilayer perceptron consisting of 3 layers with the back propagation learning algorithm was selected for EC prediction, of which nine variables in the input layer were the concentrations of each ion and one variable in the output layer the EC of nutrient solution. The meq unit in ion concentration was selected fir input variable in the input layer. After the 10,000 learning sweeps with 108 sample data, the comparison of predicted and measured ECs for 72 test data showed good agreements with the correlation coefficient of 0.998. In addition, the predicted ECs by neural network showed relatively equal or closer to the measured ones than those by current complicated models.

  • PDF

A Study on the Effect of Plants Growth on Eco Wood Pots (국산 낙엽송으로 제조한 에코우드포트(Eco Wood pots)의 식물 생장 효과에 관한 연구)

  • Oh, Geun Hye;Kim, Hee-jin;Yang, Seong-min;Nam, Jeong Bin;Kang, Seog-goo
    • Journal of the Korea Furniture Society
    • /
    • v.29 no.1
    • /
    • pp.18-23
    • /
    • 2018
  • The purpose of this study was to develop wood pots for create Optimum environment of plant growth using unused wood. to prove this, we examined the effects of cycle of water supply and nutrient concentration in wood pots on plant germination rate and growth factors (leaf number, stem diameter and length). The results are as follows. 1) The growth rate was higher at once of 2 days watering period. This suggests that the growth of the plants was better than that of the less water because the larch pots itself has the water retention capacity inside. 2) Germination rate and growth rate were better than other treatment groups when the concentration of nutrient solution was 0.5%. 3) Nitrogen, available phosphoric acid, and potassium showed higher contents than the nutrient - treated soil at 0.5% concentration of nutrient solution. This indicates that the nutrient solution absorbed from the larch affected the soil and plant growth in the inside.

  • PDF

The Effect of Tidal Cycle and River Runoff on the Dynamic of Nutrients in Keum river estuary (금강하구역에서 영양염 거동에 대한 조석 및 담수유출의 영향)

  • Kim, Jong-Gu;Kang, Hoon
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.519-528
    • /
    • 2002
  • This study was to evaluate the impact of river runoff and salt intrusion by tide on nutrient balance of estuary during a complete tidal cycle. 24 hours time series survey was carried out during a spring tide July 2001 on a tidal estuary in the Keum river. Three stations(A,B,C) were set along a transect line of about 10km, which linked the lower part of estuary dyke to the subtidal zone. Surface water was sampled simultaneously at each station every hours f3r the determination of nutrients. Water temperature, pH and dissolved oxygen were measured in situ. Riverine input of silicate and nitrate during ebb tide significantly increased the concentration of all stations. Conversely, during high tide, nutrient concentration were lowered by the mixing of fresh water with sea water Ammonium nitrogen concentration were higher at intertidal zone(Stn.B) due to sewage inflow to Kyeongpo stream and ammonium release under anaerobic conditions. Also, these results was discussed as a biological component that influences the processes of nutrient regeneration within the estuary. Best correlations were found at lower part of estuary dyke(Stn.A) for salinity against DIN(Y=0.121 Sal.+4.97, r2=0.956) and silicate(Y=0.040 Sal.+2.62, r2=0.785). But no significant correlation was found between salinity and ammonium. Unbalanced elemental ratio(N/P, Si/N and Si/P) depended significantly on the import of nutrients (silicate & nitrate nitrogen) from river and stream. The effect of the tidal cycle and river runoff is important that in determining the extend of the variations in nutrient concentrations at all station.

Comparison of Mass and Nutrient Dynamics of Coarse Woody Debris between Quercus serrata and Q. variabilis Stands in Yangpyeong

  • Kim, RaeHyun;Son, Yowhan;Hwang, Jaehong
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.115-120
    • /
    • 2004
  • Coarse woody debris (CWD, $\ge$ 5 cm in maximum diameter) is an important functional component, especially to nutrient cycling in forest ecosystems. To compare mass and nutrient dynamics of CWD in natural oak forests, a two-year study was conducted at Quercus serrata and Q. variabilis stands in Yangpyeong, Kyonggi Province. Total CWD (snag, stump, log and large branch) and annual decomposition mass (Mg/ha) were 1.9 and 0.4 for the Q. serrata stand and 7.5 and 0.5 for the Q. variabilis stand, respectively. Snags covered 72% of total CWD mass for the Q. variabilis stand and 42% for the Q. serrata stand. Most of CWD was classified into decay class 1 for both stands. CWD N and P concentrations for the Q. variabilis stand significantly increased along decay class and sampling time, except for P concentration in 2002. There were no differences in CWD N concentration for the Q. serrata stand along decay class and sampling time. However, CWD P concentration decreased along sampling time. CWD N and P contents (kg/ha) ranged from 3.5∼4.7 and 0.8∼1.3 for the Q. serrata stand to 22.8∼23.6 and 3.7∼4.7 for the Q. variabilis stand. Nitrogen and P inputs (kg/ha/yr) into mineral soil through the CWD decomposition were 0.7 and 0.3 for the Q. serrata stand and 1.6 and 0.3 for the Q. variabilis stand, respectively. The number of CWD and decay rate were main factors influencing the difference in CWD mass and nutrient dynamics between both stands.

Variability in Ash, Crude Protein, Detergent Fiber and Mineral Content of Some Minor Plant Species Collected From Pastures Grazed by Goats

  • Serra, A.B.;Serra, S.D.;Orden, E.A.;Cruz, L.C.;Nakamura, K.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.1
    • /
    • pp.28-34
    • /
    • 1997
  • This study was conducted to determine the protein content, cell wall fractions, and mineral concentrations of some minor plant species collected for one year in pastures grazed by goats in the Philippines. An assessment of nutrient variability and a comparison of forage protein and mineral concentrations to the critical value of protein and minerals based on animal needs were also studied. The plant species were the following: grasses(Axonopus compressus, Eleusine indica, Rottboellia exaltata); legumes (Aeschynomene indica, Calopogonium muconoides, Desmodium tortousum); and herbs (Corchorus olitorius, Ipomea aquatica, Sida acuta, Synedrella nodiflora). The two seasons (dry and wet) were subdivided into Dry-1 (December to February, 132 mm total rainfall), Dry-2 (March to May, 25 mm total rainfall), Wet-1 (June to August, 1,138 mm total rainfall), and Wet-2 (September to November, 1,118 mm total rainfall). Results showed that significant differences were obtained on various nutrient fractions including those mineral concentrations across species. Across season, acid detergent lignin (ADL) had higher (p < 0.05) value at Dry-1. Legumes and herbs were higher in crude protein (CP) especially Sida acuta. Grasses showed the highest neutral detergent fiber (NDF) and acid detergent fiber (ADF) with the addition of Sida nodiflora (herb) for it contained high NDF. Aeschynomene indica contained the highest amount of ADL and the herbs (Ipomea aquatica and Sida acuta) had exceptionally high concentration of minerals. Coefficient variation of the various nutrient values ranged from 27.3 to 136.7%. Some forage minerals appeared to be deficient (sodium, phosphorus and copper) or excess (molybdenum) for the whole or part of the year. This study shows that some minor plant species could extend the range of concentration of some nutrients (i.e., CP and minerals) beyond that normally found in conventional pasture species.

Assessment of Water Quality Calibration Criteria for Field-Scale Water Quality Model

  • Seong, Choung-Hyun;Kim, Sang-Min;Park, Seung-Woo;Park, Tae-Yang;Kim, Sung-Jae;Jung, Ki-Woong
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.101-107
    • /
    • 2010
  • The objective of this study was to assess the statistics and associated criteria for field-scale model used to simulate nutrient concentrations in paddy field. CREAMS-PADDY, a modified version of the field-scale CREAMS model, simulates the hydrologic, sediment, and nutrient cycles in paddy fields was applied in this study. The model was calibrated and validated using data from study rice paddy fields in Republic of Korea. The calibration statistics include mean and the minimum-maximum range associated with a "temporal window" that spans a period of several days. Because nutrient concentrations in paddy filed are typically sampled infrequently (on a weekly basis, at best) and represent only an instant in time, it is not reasonable to expect any model to simulate a daily average concentration equal to an observed value on a particular day. The 5-day window and related calibration statistics were applied in this study and the applicability of this concept was tested for field-scale water quality model. As a result of calibration and validation, the ponded water nutrient concentration values showed only small changes except the fertilization period. Because of the small changes in ponded water concentration, the size of 5-day window was too small to capture the observed values. Further study is required to establish the 5-day window calibration method for field-scale water quality modeling.

Composition of Optimal Nutrient Solution for Single-stemmed Rose 'Red velvet' in a Closed Aeroponic System

  • Kang Mu Jang;Lee Joo Hyun;Lee Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.174-181
    • /
    • 2005
  • Experiments were carried out to develop an optimal nutrient solution for the single-stemmed rose (Rosa hybrida L.) 'Red velvet' in a closed aeroponic system. Plants were grown in 1/3, 1/2, 1, or 3/2 strength of the nutrient solution of National Horticultural Research Station in Japan (NHRS). Significantly less changes of pH and EC ($dS{\cdot}m^{-1}$) in the drainage were observed in 1/2 strength treatment as compared to other treatments. The $NO_3-N$, K, Ca, and Mg concentrations in the drainage solution of 1/2 strength treatment were maintained at optimal levels. These results indicated that the rose uptakes of both nutrients and water was more stable than those in other concentration. The concentration of macronutrients in nutrient solution were adjusted based on the ratio of nutrient:water (n/w) taken up by plants grown in the 1/2 strength solution. The composition of the new solution (classified the University of Seoul (UOS) solution) was as follow; $NO_3-N$ 8.8, $NH_4-N$ 0.67, P 2.0, K 4.8, Ca 4.0, Mg 2.0 $me{\cdot}L^{-1}$. To further evaluate new solution on crop growth, the rose 'Red Velvet' was grown again in l/2, 1, and 2 strength UOS solution to compare with 1.0 strength PBG (proefstion voor bloemisterij en glasgroenpe) solution. Overall the plant growth, including the stem length and number of five-leaflet leaves was higher in 1.0 strength of UOS solution than other treatments. Results presented in this study indicate that the nutrients in the UOS solution are well balanced for the single-stemmed rose in the closed aeroponic system.

Analysis of Trophic State Variation of Lake Yongdam in Dam Construction (담수 이후 용담호 영양상태 변동 요인 분석)

  • Yu, Soon-Ju;Chae, Min-Hee;Hwang, Jong-Yeon;Lee, Jea-an;Park, Jong-gyum;Choi, Tae-bong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.360-367
    • /
    • 2005
  • We have performed to analyze the trophic state resulting of Lake Yongdam as a result of water quality and nutrient concentration. Lake Yongdam is artifitial multi-purpose Dam resulting from the floods of 2001. The water quality of Lake Yongdam may affect the status of the Geum river basin including the Daecheong reservoir. It is necessary to understand the trophic state to assess water quality until stability after flooding. Water quality was surveyed using depth and hydraulic condition analysis. Further density flow was estimated for stratification and trophic state of Lake Yongdam by chlorophyll ${\alpha}$ concentration (2001~2004). And Environmental factors on chlorophyll ${\alpha}$ concentration were analyzed statistically. Trophic state was evaluated as the oligotrophic state at the main stream of the reservoir and eutrophic state at the upper stream in 2001, but evaluated as eutrophic state in 2002 and 2003 by TSI of Aizaki. From the results of multiple regression analysis using stepwise method, chlorophyll ${\alpha}$ concentration was shown to be very significant when nutrient concentration is high upon initial filling of the Dam. Chlorophyll ${\alpha}$ concentration varied according to sample site, season and year. Concentration were high in the upper stream of Lake Yongdam 4, algae bloom in these watershed were affected by location and high nutrient levels in the summer season which have in turn increased phytoplankton bloom into the reservoir.

Effects of Sulfate Ion Concentration in Nutrient Solution on the Growth and Quality of Artemisia mongolicar var. tenuifolia (배양액 내의 황산이온 농도가 참쑥의 생육과 품질에 미치는 영향)

  • Lee, Yun-Jeong;Park, Kuen-Woo;Suh, Eun-Joo;Cheong. Jin-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.55-61
    • /
    • 1998
  • This experiment was conducted to evaluate the effects of sulfate ion concentration in nutrient solution on the growth and qualify of Mongolian wormwood (Artemisia mongolica var. tenuifolia). Sulfate ion concentration was treated 0, 0.5, 1, 2 and 3mM using the modified nutrient solution composition for herb plants developed by European Vegetable R & D Center in Belgium. The growth of Mongolian wormwood was good at 3mM treatment and dry weight was best at 3mM treatment, Chlorophyll content increased with sulfate ion concentration. Mineral content did not show any significant difference among treatments. But Ca content in tissue markedly decreased at 3mM treatment. Sulfate ion uptake increased in proportion to sulfate ion concentration in nutreint solution, the higher sulfate ion concentration, the more uptake of sulfate ion by plant. At 1mM sulfate ion treatment, essential oil content was best, but the higher sulfate ion concentration resulted in decrease of essential oil content.

  • PDF

Causes and Overcoming of the Algae Excess in a Dam Water - Based on the Data of Water Quality Analysis of Mulgum Area - (댐호화된 하천의 조류 과다 발생원인과 해소 방안 - 낙동강 물금 지역의 수질 분석 데이터를 중심으로 -)

  • Yang, Shi-Chun;Xia, Tian-Tian;Kang, Tai-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.4
    • /
    • pp.1-13
    • /
    • 2017
  • The purpose of this study is to analyze a term of decade of water quality data of the Mulgum intake station on the Nakdong river(dam) to find the cause of algal blooms and to set an alternative to prevent artificial lake water pollution. Our study shows that water quality changes have regular periodic regularity and there was a certain correlation between specific analytical items. According to the analysis results of each factor, the decline in precipitation was not the main reason for algal blooms. TP concentration had a slight effect on Chl-a concentration but was not a limiting nutrient of a bloom. TN concentration had a strong correlation with Chl-a and strongly negative correlation with temperature, but was not a bloom's limiting nutrient, and was only a dependent variable. As the temperature was negatively correlated with the Chl-a concentration, it is found that the aspect of the ecological influence of the temperature was the most important factor of the phytoplankton concentration change. The N/P ratio lies under a power function with a high degree of reliability by the TP concentration, and the phenomenon appeared to be the same as the results of two other comparative areas. This result confirms that TN is dependent on TP and the biota in the lake that TN is a dependent variable whose concentration is determined by TP it. In conclusion, the increase in lake bloom is the result of a food chain change, and it is necessary to control the ecosystem by the food chain in the lake in order to reduce the lake's bloom. In particular, it is important to keep the benthic ecosystem as wide as possible in the aerobic state.