• 제목/요약/키워드: NTIS data

Search Result 68, Processing Time 0.025 seconds

SNS Sentiment Analysis and Needmining for ICT Digital Transformation and Data Convergence Ecosystem Establishment in LEO Satellite Communications (저궤도 위성통신 분야의 ICT 디지털 전환과 데이터 융합 생태계 조성을 위한 SNS 감성분석과 니드마이닝)

  • Byeong-Hee Lee;Tae-Hyun Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.12
    • /
    • pp.347-356
    • /
    • 2023
  • In the recent war between Ukraine and Russia, low-orbit satellite communication played a major role, and Korea laid a foothold for low-orbit satellite communication services with the successful launch of Nuri in May 2023 and entered a full-scale civilian space age competition. In order to create an ecosystem for ICT digital transformation and data convergence in the field of low-orbit satellite communication, this paper conducts user sentiment analysis by importing posts from Reddit, one of the world's SNS, and extracts need-related sentences through need mining to identify user needs, performs topic modeling to classify topics, and prepares an action plan according to these topics. We hope that this study will be used as a policy resource for the development and innovation of new business models in the field of low-orbit satellite communication, bridging the digital information gap and solving social problems, contributing to sustainable digital transformation and enhancing soft power.

Commitment to Global Open Access Transition Collaboration: Outcomes and Lessons from SCOAP3-Korea

  • Jung, Youngim;Kim, Hwanmin
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.46-55
    • /
    • 2022
  • Eight years have passed since the Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP3) was launched. SCOAP3 is one of the most successful global partnerships and funds for Open Access and has been benchmarked by other Open Access initiatives. The Korea Institute of Science and Technology Information (KISTI) joined as the first Asian partner in 2011, and has supported its shared vision and contributed its financial commitment since the beginning of SCOAP3. SCOAP3-Korea is the first bottom-up collaboration for local libraries to re-direct funds previously used for subscriptions to Open Access publishing. This paper explores the roles and responsibilities of KISTI in the Open Access quest. It describes the commitment to SCOAP3 in South Korea, including how the collaboration model for SCOAP3-Korea differs from the global model. This paper also discusses the impact of SCOAP3-Korea by analyzing publications affiliated by Korean authors in SCOAP3 journals for the last six years (2014-2019). We have integrated the national R&D project and research outcome data from NTIS (National Science and Technology Information Service) to investigate the research articles benefited by SCOAP3 and research publications in non-SCOAP3 journals. The positive impact of SCOAP3 in increasing research publication in the discipline was revealed compared to non-SCOAP3 journals. In addition, the financial benefit of SCOAP3-Korea has been proven. With regard to the investment for readers, $137,094 USD was saved during the SCOAP3 Phase 1 and 2, while $748,923 USD was saved with regard to publication fees. We discussed the lessons from SCOAP3-Korea for commitment to a larger-scale Open Access transition.

Analysis of national R&D projects related to herbal medicine (2002-2022) (한약 관련 국가연구개발사업 분석 및 고찰 (2002-2022))

  • Anna Kim;Seungho Lee;Young-Sik Kim
    • Herbal Formula Science
    • /
    • v.31 no.2
    • /
    • pp.81-98
    • /
    • 2023
  • Objectives : This study aimed to analyze the trends in research and development projects related to herbal medicine and natural products in the field of traditional Korean medicine (TKM) over the past 20 years. Methods : Research projects were identified using "Korean medicine" as the subject heading in the National Science and Technology Information Service. The included projects investigated Korean medicine, natural products, or were related to the TKM industry. Data pre-processing and network analysis were performed using Python and Networkx package, and the network was visualized using the ForceAtlas2 visualization algorithm. Results : 1. Over the study period, 4,020 projects were conducted with a research budget of KRW 835.2 billion. Seven institutions performed over 100 projects each, accounting for 2.4% of all participating institutions, and the top 10 institutions accounted for 58.9% of total projects. 2. Obesity was the most frequently mentioned disease-related keyword. Chronic or age-related diseases such as diabetes, osteoporosis, dementia, parkinson's disease, cancer, inflammation, and asthma were also frequent research topics. Clinical research, safety, and standardization were also frequently mentioned. 3. Centrality analysis found that obesity was the only disease-related keyword identified, alongside TKM-related keywords. Standardization, safety, and clinical trials were identified as central keywords. Conclusions : The study found that research projects in TKM have focused on standardizing and ensuring the safety of herbal medicine, as well as on chronic and age-related diseases. Clinical studies aimed at verifying the effectiveness of herbal medicine were also frequent. These findings can guide future research and development in herbal medicine.

A Study on the Analysis of Agricultural R&D Keywords Using Textmining Method (텍스트마이닝을 활용한 농업 R&D 키워드 분석)

  • Kim, Ji-Hoon;Kim, Seong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.721-732
    • /
    • 2021
  • This study analyzed keywords for agricultural R&D using the textmining method to examine the trend of agricultural R&D. Data used for the analysis included R&D project information provided by NTIS, and the research and development step by year from 2003 to 2018 were classified and applied. The TF-IDF approach was used as the analysis method, and ranking was derived based on score. Furthermore, we analyzed by grouping for similar keywords. The main analysis results are as follows. First, agricultural R&D trends are changing according to the introduction of new technologies and changes in the external environment. Second, keyword changes appeared with a time lag in the R&D step. The main keywords are changing in the order of basic research - applied research - development research. Third, the main keyword of agricultural R&D was 'rice.' However, the direction and purpose of the research were changing according to changes in the domestic and foreign agricultural environments.

An Analysis of National R&D Trends in the Metaverse Field using Topic Modeling (토픽 모델링을 활용한 메타버스 분야 국가 R&D 동향 분석)

  • Lee, Jungwoo;Lee, Soyeon
    • Smart Media Journal
    • /
    • v.11 no.8
    • /
    • pp.9-20
    • /
    • 2022
  • With the rise of the metaverse industry worldwide, relevant national strategies and nurturing systems have been prepared in Korea. As the complexity of policies increases, the importance of establishing data-based policymkaing is growing, and studies diagnosing national R&D trends in the metaverse field are still lacking. Therefore, this paper collected NTIS national R&D information for 9,651 R&D projects promoted from 2002 to 2020. And this study looked at the current status and identified major topics based on the topic modeling, and considered time-series changes in the topics. Eleven major topics of R&D tasks in the metaverse field were derived, hot topics were service/content/platform development and medical/surgical fields of application fields, and cold topics were urban/environment/spatial information fields. Strategic R&D Management, metaverse-related laws, and institutional studies were proposed as policy directions.

Evaluating Blockchain Research Trend using Bibliometrics-based Network Analysis (블록체인 분야의 학술연구 동향분석: 계량정보학적 네트워크분석을 중심으로)

  • Zhu, Yu-Peng;Park, Han-Woo
    • Journal of Digital Convergence
    • /
    • v.17 no.6
    • /
    • pp.219-227
    • /
    • 2019
  • This study aims to examine Blockchain research trend using bibliometrics-based network analysis. The data were collected from WoS, Scopus, Korea Citation Index and National science & Technology Information Service, from 2009 to 2018. As results, the number of publications has started increasing rapidly from 2017 and it showed the initial stage of formation of coauthor network. Words often used in the title of the publications were related to application development, controversy and technology development. In addition, the majority of domestic papers are in the subject of social science, while international papers tend to focus on engineering issues. The results of the temporal analysis show that Korean researchers' block chain 3.0 started in 2017 and are rapidly increasing in 2018. The number of citations was associated with publication year in a statistically signifiant way. By examining these research trends, we hope that this paper can be a useful basis for the development of blockchain. Future research is expected to reveal more clearly the knowledge structure and characteristics of blockchain around the world.

Korean Word Sense Disambiguation using Dictionary and Corpus (사전과 말뭉치를 이용한 한국어 단어 중의성 해소)

  • Jeong, Hanjo;Park, Byeonghwa
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • As opinion mining in big data applications has been highlighted, a lot of research on unstructured data has made. Lots of social media on the Internet generate unstructured or semi-structured data every second and they are often made by natural or human languages we use in daily life. Many words in human languages have multiple meanings or senses. In this result, it is very difficult for computers to extract useful information from these datasets. Traditional web search engines are usually based on keyword search, resulting in incorrect search results which are far from users' intentions. Even though a lot of progress in enhancing the performance of search engines has made over the last years in order to provide users with appropriate results, there is still so much to improve it. Word sense disambiguation can play a very important role in dealing with natural language processing and is considered as one of the most difficult problems in this area. Major approaches to word sense disambiguation can be classified as knowledge-base, supervised corpus-based, and unsupervised corpus-based approaches. This paper presents a method which automatically generates a corpus for word sense disambiguation by taking advantage of examples in existing dictionaries and avoids expensive sense tagging processes. It experiments the effectiveness of the method based on Naïve Bayes Model, which is one of supervised learning algorithms, by using Korean standard unabridged dictionary and Sejong Corpus. Korean standard unabridged dictionary has approximately 57,000 sentences. Sejong Corpus has about 790,000 sentences tagged with part-of-speech and senses all together. For the experiment of this study, Korean standard unabridged dictionary and Sejong Corpus were experimented as a combination and separate entities using cross validation. Only nouns, target subjects in word sense disambiguation, were selected. 93,522 word senses among 265,655 nouns and 56,914 sentences from related proverbs and examples were additionally combined in the corpus. Sejong Corpus was easily merged with Korean standard unabridged dictionary because Sejong Corpus was tagged based on sense indices defined by Korean standard unabridged dictionary. Sense vectors were formed after the merged corpus was created. Terms used in creating sense vectors were added in the named entity dictionary of Korean morphological analyzer. By using the extended named entity dictionary, term vectors were extracted from the input sentences and then term vectors for the sentences were created. Given the extracted term vector and the sense vector model made during the pre-processing stage, the sense-tagged terms were determined by the vector space model based word sense disambiguation. In addition, this study shows the effectiveness of merged corpus from examples in Korean standard unabridged dictionary and Sejong Corpus. The experiment shows the better results in precision and recall are found with the merged corpus. This study suggests it can practically enhance the performance of internet search engines and help us to understand more accurate meaning of a sentence in natural language processing pertinent to search engines, opinion mining, and text mining. Naïve Bayes classifier used in this study represents a supervised learning algorithm and uses Bayes theorem. Naïve Bayes classifier has an assumption that all senses are independent. Even though the assumption of Naïve Bayes classifier is not realistic and ignores the correlation between attributes, Naïve Bayes classifier is widely used because of its simplicity and in practice it is known to be very effective in many applications such as text classification and medical diagnosis. However, further research need to be carried out to consider all possible combinations and/or partial combinations of all senses in a sentence. Also, the effectiveness of word sense disambiguation may be improved if rhetorical structures or morphological dependencies between words are analyzed through syntactic analysis.

The Classification System and Information Service for Establishing a National Collaborative R&D Strategy in Infectious Diseases: Focusing on the Classification Model for Overseas Coronavirus R&D Projects (국가 감염병 공동R&D전략 수립을 위한 분류체계 및 정보서비스에 대한 연구: 해외 코로나바이러스 R&D과제의 분류모델을 중심으로)

  • Lee, Doyeon;Lee, Jae-Seong;Jun, Seung-pyo;Kim, Keun-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.127-147
    • /
    • 2020
  • The world is suffering from numerous human and economic losses due to the novel coronavirus infection (COVID-19). The Korean government established a strategy to overcome the national infectious disease crisis through research and development. It is difficult to find distinctive features and changes in a specific R&D field when using the existing technical classification or science and technology standard classification. Recently, a few studies have been conducted to establish a classification system to provide information about the investment research areas of infectious diseases in Korea through a comparative analysis of Korea government-funded research projects. However, these studies did not provide the necessary information for establishing cooperative research strategies among countries in the infectious diseases, which is required as an execution plan to achieve the goals of national health security and fostering new growth industries. Therefore, it is inevitable to study information services based on the classification system and classification model for establishing a national collaborative R&D strategy. Seven classification - Diagnosis_biomarker, Drug_discovery, Epidemiology, Evaluation_validation, Mechanism_signaling pathway, Prediction, and Vaccine_therapeutic antibody - systems were derived through reviewing infectious diseases-related national-funded research projects of South Korea. A classification system model was trained by combining Scopus data with a bidirectional RNN model. The classification performance of the final model secured robustness with an accuracy of over 90%. In order to conduct the empirical study, an infectious disease classification system was applied to the coronavirus-related research and development projects of major countries such as the STAR Metrics (National Institutes of Health) and NSF (National Science Foundation) of the United States(US), the CORDIS (Community Research & Development Information Service)of the European Union(EU), and the KAKEN (Database of Grants-in-Aid for Scientific Research) of Japan. It can be seen that the research and development trends of infectious diseases (coronavirus) in major countries are mostly concentrated in the prediction that deals with predicting success for clinical trials at the new drug development stage or predicting toxicity that causes side effects. The intriguing result is that for all of these nations, the portion of national investment in the vaccine_therapeutic antibody, which is recognized as an area of research and development aimed at the development of vaccines and treatments, was also very small (5.1%). It indirectly explained the reason of the poor development of vaccines and treatments. Based on the result of examining the investment status of coronavirus-related research projects through comparative analysis by country, it was found that the US and Japan are relatively evenly investing in all infectious diseases-related research areas, while Europe has relatively large investments in specific research areas such as diagnosis_biomarker. Moreover, the information on major coronavirus-related research organizations in major countries was provided by the classification system, thereby allowing establishing an international collaborative R&D projects.