• Title/Summary/Keyword: NT blastocyst

Search Result 76, Processing Time 0.017 seconds

Apoptosis in the Bovine Blastocyst following Nnclear Transfer and In Vitro Fertilization (핵치환과 체외수정에 유래된 소의 배반포에서의 Apoptosis)

  • Kim, . E.H;D.W. Han;K.S. Chung;Lee, H.T.
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.2
    • /
    • pp.173-182
    • /
    • 2002
  • The mechanisms underlying of the visual assessment and resulting in optimum embryonic development following in vitro maturation, fertilization, and culture are unclear, It was known that in vitro produced embryos show more frequent occurrence of fragmentation, which resulted in poor developmental potential and decreased implantation rate. The objective of this study was to investigate the apoptotic rates in bovine blastocyst derived from in vitro fertilization (IVF) and nuclear transfer (NT). In addition, the expression levels of Bcl-2 and Bax gene were investigated in the blastocyst to confirm their potential roles in the regulation of apoptosis during preimplantation embryonic development. Analysis of apoptosis was carried out by using terminal deoxynucleotidyl transferase mediate dUTP nick end labeling (TUNEL) method. The levels of Bcl-2 and Bax gene in the blastocyst derived from IVF and NT were determined by RT-PCR. The proportion of TUNEL positive signal in blastocyst derived from NT was significantly higher than that in blastocyst derived from IVF (p<0.001). Bcl-2 expression level of blastocyst derived from IVF was higher than that of blstocyst derived from NT. However, high expression level of Bax was observed in the blastocyst derived from NT. These results indicates that apoptosis is more responsible for fiagmentation in bovine blastocyst derived from NT than IVF. These results suggested that the increase of developmental failure followed by NT could be caused by nuclear fragmentation as apoptosis.

Effects of Oviductal Fluid, Culture Media and Zona Pellucida Removal on the Development of Porcine Embryos by Nuclear Transfer

  • Zhang, Y.H.;Song, E.S.;Kim, E.S.;Cong, P.Q.;Lee, S.H.;Lee, J.W.;Yi, Y.J.;Park, Chang-Sik
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.962-968
    • /
    • 2009
  • The aim of this study was to compare the effects of oviductal fluid, porcine zygote medium (PZM)-3, PZM-4 and PZM-5, and modified PZM-5 culture media, and determine the effects of zona pellucida (ZP) removal on the development of nuclear transfer (NT) embryos. There were no significant differences in the rates of fusion and cleavage among the five different oviductal fluid concentrations. However, the rates of blastocyst formation and the cell numbers per blastocyst were high in the embryos at the 14 and 28 $\mu{g}$/ml concentrations of oviductal fluid compared to the 0, 56 and 100 $\mu{g}$/ml concentrations. The rates of cleavage and blastocyst formation, and the cell numbers per blastocyst were higher in the PZM-3, PZM-5 and modified PZM-5 media than in the PZM-4 medium. However, there were no significant differences in the fusion rates of oocytes among the four culture media. The cell numbers per blastocyst in the embryos without ZP were significantly greater than those with ZP. However, there were no significant differences in the rates of fusion, cleavage and blastocyst formation between the embryos with and without ZP. In conclusion, we improved blastocyst development and the quality of NT embryos by replacing PVA with 3 mg/ml of BSA in PZM-5 medium and supplementing the PZM-5 medium with 14 $\mu{g}$/ml oviductal fluid. The NT embryos produced by the zona-free NT method had a high rate of blastocyst formation in the modified PZM-5 medium.

Comparison of In Vitro Development of Porcine Embryos Derived from Transfer of Embryonic Germ Cell Nuclei into Oocytes by Electrofusion and Piezo-Driven Microinjection

  • Ahn, Kwang-Sung;Won, Ji-Young;Heo, Soon-Young;Kang, Jee-Hyun;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.127-131
    • /
    • 2007
  • Embryonic germ (EG) cells are undifferentiated stern cells isolated from cultured primordial germ cells (PGC). These cells share many characteristics with embryonic stem cells including morphology and pluripotency. Undifferentiated porcine EG cell lines demonstrating capacities of differentiation both in vitro and in vivo have been established. Since EG cells can be cultured indefinitely in an undifferentiated state, whereas somatic cells in primary culture are often unstable and have limited lifespan, EG cells may provide inexhaustible source of karyoplasts in nuclear transfer (NT). In this study the efficiencies of NT using porcine EG and fetal fibroblast cells were compared. Two different techniques were used to perform NT. With conventional NT procedure (Roslin method) involving fusion of donor cells with enucleated oocytes, the rates of development to the blastocyst stage in EG and somatic cell NT were 16.8% (59/351) and 14.5% (98/677), respectively. In piezo-driven microinjection (Honolulu method) of donor nuclei into enucleated oocytes, the rates of blastocyst formation in EG and somatic cell NT were 11.9% (15/126) and 9.4% (9/96), respectively. Regardless of NT methods used in this study, EG cell NT gave rise to comparable rate of blastocyst development to somatic cell NT. Overall, EG cells can be used as karyoplast donor in NT procedure, and embryos can be produced by EG cell NT that may be used as an alternative to conventional somatic cell NT.

Donor Cell Source (Miniature Pig and Landrace Pig) Affects Apoptosis and Imprinting Gene Expression in Porcine Nuclear Transfer Embryos

  • Park, Mi-Rung;Hwang, In-Sun;Shim, Joo-Hyun;Moon, Hyo-Jin;Kim, Dong-Hoon;Ko, Yeoung-Gyu;Seong, Hwan-Hoo;Im, Gi-Sun
    • Journal of Embryo Transfer
    • /
    • v.23 no.2
    • /
    • pp.101-108
    • /
    • 2008
  • This study investigated the developmental ability and gene expression of somatic cell nuclear transfer embryos using ear skin fibroblast cells derived from miniature pig. When miniature pig (m) and landrace pig (p) were used as donor cells, there were no differences in cleavage (79.2 vs. 78.2%) and blastocyst rates (27.4 vs. 29.7%). However, mNT blastocysts showed significantly higher apoptosis rate than that of pNT blastocysts (6.1 vs. 1.7%) (p<0.05). The number of nuclei in pNT blastosysts was significantly higher than that of mNT (35.8 vs. 29.3) (p<0.05). Blastocysts were analyzed using Realtime RT-PCR to determine the expression of Bax-${\alpha}$, Bcl-xl, H19, IGF2, IGF2r and Xist. Bax-${\alpha}$ was higher in mNT blastocyst than pNT blastocyst (p<0.05). There was no difference in Bcl-xl between two NT groups. Bax-${\alpha}$/Bcl-xl was, however, significantly higher in mNT blastocyst compared to pNT. The expression of imprinting genes were aberrant in blastocysts derived from NT compared to in vivo blastocysts. H19 and IGF2r were significantly lower in mNT blastocysts (p<0.05). The expression of IGF2 and Xist was similar in two NT groups. However, imprinting genes were expressed aberrantly in mNT compared to pNT blastocysts. The present results suggest that the NT between donor cells derived from miniature pig and recipient oocytes derived from crossbred pig might affect reprogramming of donor cell, resulting in high apoptosis and aberrant expression patterns of imprinting genes.

Effects of Recipient Oocytes and Donor Cells Condition on in Vitro Development of Cloned Embryos after Interspecies Nuclear Transfer with Caprine Somatic Cell (산양의 이종간 핵이식에 있어서 수핵난자에 따른 공여세포의 조건이 핵이식란의 체외발달에 미치는 영향)

  • 이명열;박희성
    • Reproductive and Developmental Biology
    • /
    • v.28 no.1
    • /
    • pp.13-20
    • /
    • 2004
  • This study was conducted to investigate the developmental ability of caprine embryos after somatic cell interspecies nuclear transfer. Donor cells were obtained from an ear-skin biopsy of a caprine, digested with 0.25% trypsin-EDTA in PBS, and primary fibroblast cultures were established in TCM-199 with 10% FBS. After maturation, expanded cumulus cells were removed by vigorous pipetting in the presence of 0.3% hyaluronidase. The matured oocytes were dipped in D-PBS plus 10% FBS+7.5 $\mu\textrm{g}$/ml cytochalasin B and 0.05 M sucrose. The reconstructed oocytes were electrically fused with donor cells in 0.3 M mannitol fusion medium. After the electofusion, embryos were activated by electric stimulation. Interspecies nuclear transfer embryos with bovine cytoplasts were cultured in TCM-199 medium supplemented with 10% FBS including bovine oviduct epithelial cells for 7∼9 day. On the other hand, the NT embryos with porcine cytoplasts were cultured in NCSU-23 medium supplemented with 10% FBS for 6∼8 day at $39^{\circ}C, 5% CO_2$ in air. In caprine-bovine NT embryos, the cleavage(2-cell) rate was 36.8% in confluence and 43.8% in serum starvation. The developmental rate of morula- and blastocyst-stage embryos was 0.0% in confluence and 18.8% in serum starvation. In caprine-porcine NT embryos, the cleavage(2-cell) rate was 76.7% in confluence and 66.7% in serum starvation. The developmental rate of morula and blastocyst stage embryos was 3.3% in confluence and 3.0% in serum starvation, and no significant difference was observed in synchronization treatment between donor cells. In caprine-bovine NT embryos, the cleavage(2-cell) rate of cultured donor cells was 30.8% and 17.6% in 5∼9 and 10∼14 passage(P<0.05). The developmental rate of morula and blastocyst stage embryos were significantly higher(P<0.05) in 5∼9 passage(23.1%) than in 10∼14 passage(0.0%) of cultured donor cells. In caprine-porcine NT embryos, the cleavage rate was significantly higher(P<0.05) in 5∼9 passage(86.7%) than in 10∼14 passage(50.0%) of cultured donor cells. The developmental rate of morula and blastocyst stage embryos were 3.3 and 0.0% in 5∼9 and 10∼14와 passage of cultured donor cells. In caprine-bovine NT embryos, the developmental rate of morula and blastocyst stage embryos were 22.6% in interspecies nuclear transfer, 33.9% in in vitro fertilization and 28.1% in parthenotes, which was no significant differed. The developmental rate of morula and blastocyst stage embryos with caprine-porcine NT embryos were lower(P<0.05) in interspecies nuclear transfer(5.1%) than in vitro fertiltzation(26.9%) and parthenotes(37.4%).

Chromosome Aberrations in Porcine Embryo Produced by Nuclear Transfer with Somatic Cell

  • Ah, Ko-Seung;Jin, Song-Sang;Tae, Do-Jeong;Chung, Kil-Saeng;Lee, Hoon-Taek
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.73-73
    • /
    • 2002
  • Nuclear transfer (NT) techniques have advanced in the last years, and cloned animals have been produced by using somatic cells in several species including pig. However, it is difficult that the nuclear transfer porcine embryos development to blastocyst stage overcoming the cell block in vitro. Abnormal segregation of chromosomes in nuclear transferred embryos on genome activation stage bring about embryo degeneration, abnormal blastocyst, delayed and low embryo development. Thus, we are evaluated that the correlations of the frequency of embryo developmental rates and chromosome aberration in NT and In viかo fertilization (IVF) derived embryo. We are used for ear-skin-fibroblast cell in NT. If only karyotyping of embryonic cells are chromosomally abnormal, they may difficultly remain undetected. Then, we evaluate the chromosome aberrations, fluorescent in situ hybridization (FISH) with porcine chromosome 1 submetacentric specific DNA probe were excuted. In normal diploid cell nucleus, two hybridization signal was detected. In contrast, abnormal cell figured one or three over signals. The developmental rates of NT and IVF embryos were 55% vs 63%, 32% vs 33% and 13% vs 17% in 2 cell, 8 cell and blastocyst, respectively. When looking at the types of chromosome aberration, the detection of aneuploidy at Day 3 on the embryo culture. The percentage of chromosome aneuploidy of NT and IVF at 4-cell stage 40.0%, 31.3%, respectively. This result indicate that chromosomal abnormalities are associated with low developmental rate in porcine NT embryo. It is also suggest that abnormal porcine embryos produced by NT associated with lower implantation rate, increase abortion rate and production of abnormal fetuses.

  • PDF

DNA Methylation Change of Repeats Sequences in Pig SCNT Embryos Produced under Different Osmolarity Culture Conditions (삼투압 배양 조건에 따른 돼지 체세포 복제 배반포에서 Repeats 영역의 DNA 메틸화 변화)

  • Ko, Yeoung-Gyu;Im, Gi-Sun;Park, Mi-Rung;Woo, Jae-Seok;Yang, Byoung-Chul;Hwang, Seong-Soo;Lee, Hwi-Cheul;Lee, Poong-Yeon;Cho, Chang-Yeon;Choi, Sun-Ho;Yoo, Young-Hee
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.181-184
    • /
    • 2010
  • Osmolarity of culture media is one of the most important factors affecting in vitro development. This study was conducted to investigate the DNA methylation status of Pre-1 and satellite sequence in pig nuclear transfer (pNT) embryos produced under different osmolarity culture conditions. Control group of pNT embryos was cultured in PZM-3 for six days. Other two treatment groups of pNT embryos were cultured in modified PZM-3 with 138 mM NaG or 0.05M sucrose (mPZM-3, 320 mOsmol) for two days, and then cultured in PZM-3 (270 mOsmol) for four days. Previous our studies have reported that pNT embryos cultured in both hypertonic media showed significantly higher blastocyst formation rate than that of control. The DNA methylation status of the satellite sequences in blastocyst was characterized using bisulfite-sequencing technology. The satellite region had a similar methylation pattern of in vivo blastocyst among two culture groups excepting the control group. Each level of methylation is that the satellite DNA moderately methylated (43.10% of PZM-3; 56.12% of NaCl; 55.06% of sucrose; 60.00% of in vivo embryos). As a result of the sequence of PRE-1, CpG methylation pattern was similar to three groups, including in vivo group. In case of the satellite DNA region, the osmolarity conditions were affected CpG DNA methylation status while PRE-1 sequence was not affected CpG DNA methylation in pNT blastocyst stage. These results indicate that the modification of osmolarity in a culture media may influence to spatially change of DNA methylation of repetitive sequence for pNT embryo development.

Comparisons of Developmental Potential and Gene Expression Level in Porcine Nuclear Transfer, Parthenogenetic and Fertilized Embryos

  • Kim Jung-Gon;Kumar B. Mohana;Cho Sung-Keun;Ock Sun-A;Jeon Byeong-Gyun;Balasubramanian S.;Rho Gyu-Jin;Choe Sang-Yong
    • Reproductive and Developmental Biology
    • /
    • v.30 no.2
    • /
    • pp.125-133
    • /
    • 2006
  • This study was conducted to detect the apoptosis incidence in blastocysts and to compare the abundance of Bax, Bcl2L1, VEGF and FGFR2 in in vitro fertilized (IVF), parthenogenetic (PAT) and nuclear transfer (NT) embryos. Oocytes matured for 40 hr were enucleated and reconstructed with confluenced fetal fibroblasts (FFs) derived from a ${\sim}45$ day fetus. Reconstructed eggs were then fused with 2 DC pulses (2.0 kV/cm, $30{\mu}sec$) and cultured with $7.5{\mu}g/ml$ cytochalasin B for 3 hr. Parthenotes (PAT) were produced with the same electric strength and culture for NT eggs. The embryos were cultured in NCSU-23 medium at $39^{\circ}C,\;5%\;CO_2,\;5%\l;O_2$ in air. In 3 runs, set of 10 embryos at the 4-cell to blastocyst stages were used to extract total RNA for analyzing the gene expression patterns of pro-apoptotic (Bax), anti-apoptotic (Bcl2L1), vasculogenesis (VEGF), implantation (FGFR2III) using real-time quantitative PCR. Cleavage and blastocyst rates were significantly higher (P<0.05) in IVF and PAT ($79.3{\pm}8.5\;and\;25.5{\pm}6.1,\;and\;85.0{\pm}6.4\;and\;38.6{\pm}5.5$, respectively)than NT counterparts ($65.1{\pm}5.2\;and\;15.6{\pm}3.0$, respectively). Significantly higher (P<0.05) total cells were observed in IVF controls and PAT ($34.7{\pm}5.8\;and\;38.1{\pm}4.1$) than NT embryos ($24.8{\pm}3.2$). Apoptosis index was significantly lower (P<0.05) in IVF than NT embryos. The Relative abundances (RA) of Bax and VEGF were significantly higher (P<0.05) at blastocyst stage in NT than IVF control. The RA of Bcl2L1 and FGFR2III were significantly higher (P<0.05) at blastocyst stage in IVF than NT. The present study observed the abnormal gene expressions in NT embryos at various developmental stages, suggesting certain clues to find out the cause of the low efficiency of NT to term.

Morphological Characteristics of Pig Blastocysts Produced by Somatic Cell Nuclear Transfer

  • Y.M. Han;D.B. Koo;Park, Y.H.;Park, J.S.;Kim, H.N.;Y.K. Kang;W.K. Chang;Lee, K.K.
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.68-68
    • /
    • 2001
  • Blastocyst formation, consisting of the inner cell mass (ICM) and trophectoderm (TE), is the first differentiation process during embryonic development in mammals. It has been hypothesized that the proportion of ICM to TE in the blastocyst may be crucial for subsequent developmental competence of early embryos, which it may be expressed as a sensitive indicator for evaluating in vitro systems. In this study ICM/total cell ratio of nuclear transfer (NT) embryos was compared with IVF-derived and in vivo embryos. Somatic cell nuclei obtained from a fetus at Day 40 of gestation were transferred into the enucleated oocyte and then cultured in NCSU 23 medium for 6 days as previously described (Koo et al., Biol. Reprod. 2000; 63:986-992). ICM and TE cells of blastocysts were determined by using a differential staining method (Han et al., Biol. Reprod. 1999; 60:1110-1113). Development rate (9.8$\pm$2.5%, 23/225) to the blastocyst stage of NT embryos was lower than IVF embryos (23.8$\pm$2.7%, 53/223). Thus, a difference was detected in the in vitro developmental rate to blastocyst stage between NT and IVF-derived embryos (P<0.05). In the next experiment, we investigated ICM and TE nuclei to assess the quality of blastocysts that produced by NT, IVF and in vivo, respectively. NT blastocysts (27.6$\pm$8.3) showed a smaller total cell number than IVF-derived (42.6$\pm$17.4) and in vivo embryos (283.9$\pm$103.5) (P<0.05). Ratios of ICM/total cells in NT, IVF and in vivo blastocysts were 15.1$\pm$ 18.6% (n=56), 12.3$\pm$9.2% (n=57) and 30.4$\pm$6.8% (n=40), respectively. Individual blastocysts for the ratio of ICM/total cells were assigned to 3 groups (I; <20%, II; 20 to 40% and III;>40%). As the results, most in vivo blastocysts (97.5%, 39/40) were distributed into group II while most NT (78.6%, 44/56) and IVF-derived blastocysts (82.5%, 47/57) were allocated to group I. Thus, our data show that NT or IVF-derived embryos have aberrant morphology during early development in vitro systems, suggesting that these anomalies may result in developmental failures of the NT embryos to term.

  • PDF

Effect of Osmolarity of Culture Medium on the Preimplantation Development of Porcine NT and IVF Embryos

  • Hwang, In-Sun;Park, Mi-Rung;Moon, Hyo-Jin;Shim, Joo-Hyun;Kim, Dong-Hoon;Yang, Byoung-Chul;Ko, Yeoung-Gyu;Yang, Boh-Suk;Cheong, Hee-Tae;Im, GI-Sun
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.91-96
    • /
    • 2007
  • In vitro development of porcine embryo is affected by culture condition. One possible factor is osmolarity of culture medium. 1his study examined whether high osmolarity of culture medium at the early culture stage improves development of preimplantation porcine in vitro fertilization (IVF) and nuclear transfer (NT) embryos. NT and IVF embryos were divided into three groups and the basic medium was PZM-3 ($250{\sim}270$ mOsmol, control group). The control group of embryos was cultured in PZM-3 for whole culture period. Other two groups of embryos were cultured in a modified PZM-3 with 0.05 M sorbitol or 0.05 M sucrose ($300{\sim}320$ mOsmol, sorbitol or sucrose group) for the first 2 days, and then cultured in PZM-3 for further culture. NT embryos cultured in sucrose group showed a significantly higher developmental rate to the blastocyst stage with a decreased apoptosis rate compared to the sorbitol (p<0.05). For IVF, sucrose group showed a significantly increased the blastocyst formation rate with a decreased apoptosis rate compared to the control (p<0.05). This study represents that the high osmolarity in the early embryo culture stage can enhance the in vitro development of porcine NT and IVF embryos to the blastocyst stage with reduced apoptosis of cells.