• Title/Summary/Keyword: NSSC's Notice

Search Result 2, Processing Time 0.018 seconds

Re-evaluation of Korean Effluent Concentration Limits and Comparative Analysis

  • Hwang, Won Tae;Lee, Joeun;Kwon, Dahye;Kim, Eun Han;Han, Moon Hee
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.124-129
    • /
    • 2018
  • Background: Effluent Concentration Limits (ECLs) were re-evaluated via direct calculation using dose coefficients based on radiation protection quantity introduced in Korea and the intrinsic breathing rates of Korean residents. Materials and Methods: The re-evaluated ECLs were compared with the domestic standards given in the Notice of the Nuclear Safety and Security Commission (NSSC), as well as with ECLs specified in the Code of Federal Regulations (CFR). Results and Discussion: The relative ratios of the re-evaluated ECLs to the currently applied domestic standards differed depending on the radionuclide type, but it was clearly shown that, for tritium ($^3H$) and radiocarbon ($^{14}C$), which significantly affect radiological dose to the public during the normal operation of nuclear power plants, the re-evaluated ECLs were higher than the domestic standards. This implies that Korean standards are relatively conservative. Conclusion: The re-evaluated results for each age group showed that $^{131}I$ (radioiodine), one of the significant radionuclides, had the lowest values, but nonetheless, the domestic standards for radioiodine were lower than the ECLs given in the CFR and the re-evaluated ECLs via a method given in the CFR.

Structural Safety Analysis of Lifting Device for Spent Fuel Dual-purpose Metal Cask (사용후핵연료 금속겸용용기 인양장비의 구조 안전성 해석)

  • Moon, Tae-Chul;Baeg, Chang-Yeal;Yun, Si-Tae;Choi, Byung-Il;Jung, In-Su
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.299-314
    • /
    • 2014
  • A lifting device is used to deal with transport cask for the transportation of spent fuels from nuclear power plants. This study performed theoretical analysis and numerical simulation to evaluate the structural integrity of the lifting device based on Nuclear Safety and Security Commission(NSSC) Notice No.2013-27 and US 10CFR Part 71 ${\S}71.45$. The results of theoretical analysis showed that the maximum stresses of all components were below the allowable values. This result confirmed that the lifting device was structurally safe during operation. The results of finite element analysis also showed that it was evaluated to satisfy the design criteria bothyielding and ultimate condition. All components have been shown to ensure the structural safety due to sufficient safety margins. In other words, the safety factor was 3 or more for the yielding condition and was 5 or more for the ultimate condition.