• Title/Summary/Keyword: NSGA-II-IS

Search Result 80, Processing Time 0.024 seconds

Multi-Objective Genetic Algorithm for Machine Selection in Dynamic Process Planning (동적 공정계획에서의 기계선정을 위한 다목적 유전자 알고리즘)

  • Choi, Hoe-Ryeon;Kim, Jae-Kwan;Lee, Hong-Chul;Rho, Hyung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.84-92
    • /
    • 2007
  • Dynamic process planning requires not only more flexible capabilities of a CAPP system but also higher utility of the generated process plans. In order to meet the requirements, this paper develops an algorithm that can select machines for the machining operations by calculating the machine loads. The developed algorithm is based on the multi-objective genetic algorithm that gives rise to a set of optimal solutions (in general, known as the Pareto-optimal solutions). The objective is to satisfy both the minimization number of part movements and the maximization of machine utilization. The algorithm is characterized by a new and efficient method for nondominated sorting through K-means algorithm, which can speed up the running time, as well as a method of two stages for genetic operations, which can maintain a diverse set of solutions. The performance of the algorithm is evaluated by comparing with another multiple objective genetic algorithm, called NSGA-II and branch and bound algorithm.

On Generating Fuzzy Systems based on Pareto Multi-objective Cooperative Coevolutionary Algorithm

  • Xing, Zong-Yi;Zhang, Yong;Hou, Yuan-Long;Jia, Li-Min
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.444-455
    • /
    • 2007
  • An approach to construct multiple interpretable and precise fuzzy systems based on the Pareto Multi-objective Cooperative Coevolutionary Algorithm (PMOCCA) is proposed in this paper. First, a modified fuzzy clustering algorithm is used to construct antecedents of fuzzy system, and consequents are identified separately to reduce computational burden. Then, the PMOCCA and the interpretability-driven simplification techniques are executed to optimize the initial fuzzy system with three objectives: the precision performance, the number of fuzzy rules and the number of fuzzy sets; thus both the precision and the interpretability of the fuzzy systems are improved. In order to select the best individuals from each species, we generalize the NSGA-II algorithm from one species to multi-species, and propose a new non-dominated sorting technique and collaboration mechanism for cooperative coevolutionary algorithm. Finally, the proposed approach is applied to two benchmark problems, and the results show its validity.

Machine load prediction for selecting machines in machining (절삭가공에서의 기계선정을 위한 기계부하 예측)

  • Choi H.R.;Kim J.K.;Rho H.M.;Lee H.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.997-1000
    • /
    • 2005
  • Dynamic job shop environment requires not only more flexible capabilities of a CAPP system but higher utility of the generated process plans. In order to meet the requirements, this paper develops an algorithm that can select machines for the machining operations to be performed by predicting the machine loads. The developed algorithm is based on the multiple objective genetic algorithm that gives rise to a set of optimal solutions (in general, known as Pareto-optimal solutions). The objective shows a combination of the minimization of part movement and the maximization of machine utility balance. The algorithm is characterized by a new and efficient method for nondominated sorting, which can speed up the running time, as well as a method of two stages for genetic operations, which can maintain a diverse set of solutions. The performance of the algorithm is evaluated by comparing with another multiple objective genetic algorithm, called NSGA-II.

  • PDF

Optimum design of steel frame structures considering construction cost and seismic damage

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.1-26
    • /
    • 2015
  • Minimizing construction cost and reducing seismic damage are two conflicting objectives in the design of any new structure. In the present work, we try to develop a framework in order to solve the optimum performance-based design problem considering the construction cost and the seismic damage of steel moment-frame structures. The Park-Ang damage index is selected as the seismic damage measure because it is one of the most realistic measures of structural damage. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. To improve the time efficiency of the proposed framework, three simplifying strategies are adopted: first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication; second, fitness approximation decreasing the number of fitness function evaluations; third, wavelet decomposition of earthquake record decreasing the number of acceleration points involved in time-history loading. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency's (FEMA) recommended seismic design specifications. The results from numerical application of the proposed framework demonstrate the efficiency of the framework in solving the present multi-objective optimization problem.

Machine-Learning Based Optimal Design of A Large-leakage High-frequency Transformer for DAB Converters (누설 인덕턴스를 포함한 DAB 컨버터용 고주파 변압기의 머신러닝 활용한 최적 설계)

  • Eunchong, Noh;Kildong, Kim;Seung-Hwan, Lee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.507-514
    • /
    • 2022
  • This study proposes an optimal design process for a high-frequency transformer that has a large leakage inductance for dual-active-bridge converters. Notably, conventional design processes have large errors in designing leakage transformers because mathematically modeling the leakage inductance of such transformers is difficult. In this work, the geometric parameters of a shell-type transformer are identified, and finite element analysis(FEA) simulation is performed to determine the magnetization inductance, leakage inductance, and copper loss of various shapes of shell-type transformers. Regression models for magnetization and leakage inductances and copper loss are established using the simulation results and the machine learning technique. In addition, to improve the regression models' performance, the regression models are tuned by adding featured parameters that consider the physical characteristics of the transformer. With the regression models, optimal high-frequency transformer designs and the Pareto front (in terms of volume and loss) are determined using NSGA-II. In the Pareto front, a desirable optimal design is selected and verified by FEA simulation and experimentation. The simulated and measured leakage inductances of the selected design match well, and this result shows the validity of the proposed design process.

Optimal seismic retrofit design method for asymmetric soft first-story structures

  • Dereje, Assefa Jonathan;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.677-689
    • /
    • 2022
  • Generally, the goal of seismic retrofit design of an existing structure using energy dissipation devices is to determine the optimum design parameters of a retrofit device to satisfy a specified limit state with minimum cost. However, the presence of multiple parameters to be optimized and the computational complexity of performing non-linear analysis make it difficult to find the optimal design parameters in the realistic 3D structure. In this study, genetic algorithm-based optimal seismic retrofit methods for determining the required number, yield strength, and location of steel slit dampers are proposed to retrofit an asymmetric soft first-story structure. These methods use a multi-objective and single-objective evolutionary algorithms, each of which varies in computational complexity and incorporates nonlinear time-history analysis to determine seismic performance. Pareto-optimal solutions of the multi-objective optimization are found using a non-dominated sorting genetic algorithm (NSGA-II). It is demonstrated that the developed multi-objective optimization methods can determine the optimum number, yield strength, and location of dampers that satisfy the given limit state of a three-dimensional asymmetric soft first-story structure. It is also shown that the single-objective distribution method based on minimizing plan-wise stiffness eccentricity turns out to produce similar number of dampers in optimum locations without time consuming nonlinear dynamic analysis.

Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.227-245
    • /
    • 2013
  • The term "constructability" in regard to cast-in-place concrete construction refers mainly to the ease of reinforcing steel placement. Bar congestion complicates steel placement, hinders concrete placement and as a result leads to improper consolidation of concrete around bars affecting the integrity of the structure. In this paper, a multi-objective approach, based on the non-dominated sorting genetic algorithm (NSGA-II) is developed for optimal design of reinforced concrete cantilever retaining walls, considering minimization of the economic cost and reinforcing bar congestion as the objective functions. The structural model to be optimized involves 35 design variables, which define the geometry, the type of concrete grades, and the reinforcement used. The seismic response of the retaining walls is investigated using the well-known Mononobe-Okabe analysis method to define the dynamic lateral earth pressure. The results obtained from numerical application of the proposed framework demonstrate its capabilities in solving the present multi-objective optimization problem.

Multi-objective Optimization Model with AHP Decision-making for Cloud Service Composition

  • Liu, Li;Zhang, Miao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3293-3311
    • /
    • 2015
  • Cloud services are required to be composed as a single service to fulfill the workflow applications. Service composition in Cloud raises new challenges caused by the diversity of users with different QoS requirements and vague preferences, as well as the development of cloud computing having geographically distributed characteristics. So the selection of the best service composition is a complex problem and it faces trade-off among various QoS criteria. In this paper, we propose a Cloud service composition approach based on evolutionary algorithms, i.e., NSGA-II and MOPSO. We utilize the combination of multi-objective evolutionary approaches and Decision-Making method (AHP) to solve Cloud service composition optimization problem. The weights generated from AHP are applied to the Crowding Distance calculations of the above two evolutionary algorithms. Our algorithm beats single-objective algorithms on the optimization ability. And compared with general multi-objective algorithms, it is able to precisely capture the users' preferences. The results of the simulation also show that our approach can achieve a better scalability.

Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.271-294
    • /
    • 2014
  • In recent years, along with the advances made in performance-based design optimization, the need for fast calculation of response parameters in dynamic analysis procedures has become an important issue. The main problem in this field is the extremely high computational demand of time-history analyses which may convert the solution algorithm to illogical ones. Two simplifying strategies have shown to be very effective in tackling this problem; first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication, second, wavelet analysis of earthquake records decreasing the number of acceleration points involved in time-history loading. In this paper, we try to develop an efficient framework, using both strategies, to solve the performance-based multi-objective optimal design problem considering the initial cost and the seismic damage cost of steel moment-frame structures. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency (FEMA) recommended design specifications. The results from numerical application of the proposed framework demonstrate the capabilities of the framework in solving the present multi-objective optimization problem.

Designing a Vehicles for Open-Pit Mining with Optimized Scheduling Based on 5G and IoT

  • Alaboudi, Abdulellah A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.145-152
    • /
    • 2021
  • In the Recent times, various technological enhancements in the field of artificial intelligence and big data has been noticed. This advancement coupled with the evolution of the 5G communication and Internet of Things technologies, has helped in the development in the domain of smart mine construction. The development of unmanned vehicles with enhanced and smart scheduling system for open-pit mine transportation is one such much needed application. Traditional open-pit mining systems, which often cause vehicle delays and congestion, are controlled by human authority. The number of sensors has been used to operate unmanned cars in an open-pit mine. The sensors haves been used to prove the real-time data in large quantity. Using this data, we analyses and create an improved transportation scheduling mechanism so as to optimize the paths for the vehicles. Considering the huge amount the data received and aggregated through various sensors or sources like, the GPS data of the unmanned vehicle, the equipment information, an intelligent, and multi-target, open-pit mine unmanned vehicle schedules model was developed. It is also matched with real open-pit mine product to reduce transport costs, overall unmanned vehicle wait times and fluctuation in ore quality. To resolve the issue of scheduling the transportation, we prefer to use algorithms based on artificial intelligence. To improve the convergence, distribution, and diversity of the classic, rapidly non-dominated genetic trial algorithm, to solve limited high-dimensional multi-objective problems, we propose a decomposition-based restricted genetic algorithm for dominance (DBCDP-NSGA-II).